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Introduction
What is in C++20?

The big four:

‚ Concepts

‚ Coroutines

‚ Modules

‚ Ranges
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Introduction
What is in C++20?

‚ In this seminar we will only cover concepts and ranges in
detail.

‚ Modules are not particularly useful today. Those
compilers that have partial support are still very buggy
and hard to use.

‚ Coroutines are supported in most compilers, but they
will not be especially useful until C++23 (at the earliest).

‚ There are links published with these slides where you
can read more.
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Introduction
What is in C++20?

Other minor things:

‚ Three‐way comparison operator

‚ Extended template parameters

‚ Lambda improvements

‚ constinit and consteval

‚ Various language and library features

‚ More concurrency primitives
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Concepts
Example

template <typename T>
auto remainder(T a, T b)
{
return a % b;

}
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Concepts
Example

‚ remainder only works for integral types (int, bool,
char, long etc.).

‚ Floating point numbers (float, double and
long double) doesn’t support operator%.

‚ However, the concept of remainders is still applicable to
floating point numbers.

‚ In <cmath> there is the function std::fmod that
calculates the remainder for floating point numbers.
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Concepts
Example

template <typename T>
auto remainder(T a, T b)
{
return a % b;

}

template <typename T>
auto remainder(T a, T b)
{
return std::fmod(a, b);

}
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Concepts
Example

example.cc:11:6: error: redefinition of
`template<class T> auto remainder(T, T)`

11 | auto remainder(T a, T b)
| ^~~~~~~~~

example.cc:5:6: note: `template<class T> auto remainder(T, T)`
previously declared here

5 | auto remainder(T a, T b)
| ^~~~~~~~~
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Concepts
Example

‚ This will unfortunately not work...

‚ We have two equally valid overloads of remainder

‚ Any call to remainder will therefore be ambigous
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Concepts
Example

template <typename T>
auto remainder(T a, T b)

-> std::enable_if_t<std::is_integral_v<T>,
decltype(a % b)>

{
return a % b;

}

template <typename T>
auto remainder(T a, T b)

-> std::enable_if_t<std::is_floating_point_v<T>,
decltype(std::fmod(a, b))>

{
return std::fmod(a, b);

}
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Concepts
Example

‚ This works, but is very terse.

‚ Since we are forced to use trailing return types for our
SFINAE usage, we can’t use auto as return type
anymore.

‚ So we have to duplicate our return statement in a
decltype statement if we want the compiler to deduce
the right return type.

‚ If T is something other than an integral or floating point
type, the errors are horribly unhelpful.
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Concepts
Enter requires

// requires after template header
template <typename T> requires std::is_integral_v<T>
auto remainder(T a, T b)
{
return a % b;

}

// requires after function header
template <typename T>
auto remainder(T a, T b) requires std::is_floating_point_v<T>
{
return std::fmod(a, b);

}
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Concepts
Enter requires

‚ requires is a new keyword that specifies requirements
on function templates.

‚ It can be placed immediately after the template header,

‚ Or immediately after the function header.

‚ Requirements are expressed as bool expressions,

‚ which means that we can use && and || to chain
multiple requirements together.
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Concepts
Enter requires

// requires after template header
template <typename T>
requires std::is_integral_v<T> || std::is_convertible_v<T, int>

auto remainder(T a, T b)
{
return a % b;

}

// requires after function header
template <typename T>
auto remainder(T a, T b)
requires std::is_floating_point_v<T> || std::is_convertible_v<T, double>

{
return std::fmod(a, b);

}
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Concepts
Enter requires

‚ Now we are checking that T is either an integral/floating
point type,

‚ or convertible to int and double respectively.

‚ This works since requires just expects a bool
expression.
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Concepts
Even simpler with Concepts

template <typename T>
auto remainder(T a, T b)
requires std::integral<T>

{
return a % b;

}

template <typename T>
auto remainder(T a, T b)
requires std::floating_point<T>

{
return std::fmod(a, b);

}
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Concepts
Even simpler with Concepts

‚ Concepts are a collection of requirements bundled
together into one entity, called a concept.

‚ Concepts are used to induce requirements on template
parameters. They also act as bool conditions.

‚ The standard library provides several pre‐defined
concepts in <concepts>,

‚ For example: std::integral and
std::floating_point.

‚ But you can also make your own.
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Concepts
A simpler way to use concepts

template <std::integral T>
auto remainder(T a, T b)
{
return a % b;

}

template <std::floating_point T>
auto remainder(T a, T b)
{
return std::fmod(a, b);

}
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Concepts
A simpler way to to use concepts

‚ We can replace typename in template parameter
declarations with a specific concept instead.

‚ This means that whatever that template parameter is
instantiated as, it must fulfill the requirements specified
by the concept.
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Concepts
Implementation of std::integral and std::floating_point

namespace std
{
template <typename T>
concept integral = std::is_integral_v<T>;

template <typename T>
concept floating_point = std::is_floating_point_v<T>;

}
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Concepts
Creating own concepts

‚ You create your own concept with the concept keyword.

‚ Each concept must take template parameters which are
then constrained.

‚ After the concept name there must be a = that are then
followed by the constraints, which are all bool
expressions.
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Concepts
Creating our own concepts

template <typename T>
concept like_int = std::integral<T> ||

std::is_convertible_v<T, int>;

template <like_int T>
concept remainder(T a, T b)
{
return a % b;

}



25 / 74

Concepts
Creating our own concepts

‚ We can join multiple constraints together with && and
||, which allows for more complicated concepts.

‚ We should also note that concepts acts as bool
conditions, so we can also use those to define other,
more constrained concepts.

‚ In this case we are saying that Tmust either fulfill
std::integral, or it must be convertible to int in
order to fulfill the like_int concept.

‚ Let’s look at another example:
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Concepts
Another example

template <has_at T>
auto&& get(T&& t, int i)
{
return t.at(i);

}

template <has_iterator T> requires (!has_at<T>)
auto&& get(T&& t, int i)
{
return *std::next(std::begin(t), i);

}
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Concepts
Another example

‚ In this example we want to make a get function that
takes a container and an index and returns the element
at the corresponding index in the container. The
elements are returned as the most appropriate
reference type.

‚ If the container has an at function, we want to use that,
otherwise we want to use iterators. Note that the
iterator case only occurs if we don’t have an at function
due to the requirement (!has_at<T>).

‚ We need the has_at and has_iterator concept.
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Concepts
Implementing has_at and has_iterator

template <typename T>
concept has_at = requires(T t, int i)
{
t.at(i);

};

template <typename T>
concept has_iterator = requires(T t)
{
{ std::begin(t) } -> std::input_iterator;

};
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Concepts
Implementing has_at and has_iterator

‚ A concept can also use a requires clause,

‚ which is a way for us to specify requirements on the
interface of the passed in types.

‚ This is done by checking that certain expressions are
valid for the type.

‚ These expressions are never actually evaluated, they are
just examined by the compiler to check if they are valid
for the specified type.
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Concepts
Implementing has_at and has_iterator

‚ In order to make such checks we need access to objects
that are involved in the expression we are checking.

‚ Because of this, a requires clause can take parameters.
We can add how many parameters we want, and they
can be whatever type we want.

‚ These parameters are never actually created and we
never pass anything to them. They are just there so we
have access to symbolic objects that are used in the
validation of the expressions.
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Concepts
Implementing has_at and has_iterator

‚ This can be seen in the has_at concept where we take a
T object called t and an int parameter called i. These
parameters are never created, and we don’t have to
care about them when using our concept.

‚ These are then used in the body of the requires clause
to check if we can call t.at(i).

‚ This simply means that the compiler checks: does T have
a member function which can be called on an instance
of T with an int parameter?
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Concepts
Implementing has_at and has_iterator

‚ We can also set requirements for the return type of an
expression, which can be seen in has_iterator.

‚ We do this by wrapping our expression in curly braces,
i.e. { std::begin(t) } followed by an arrow (->).

‚ After this arrow we specify what concept the return type
should fulfill.

‚ In this case we are using the concept
std::input_iterator to check that std::begin(t) at
least returns an input iterator.



30 / 74

Concepts
Even simpler implementation

template <typename T>
concept has_at = requires(T t, int i)
{

t.at(i);
};

template <typename T>
concept has_iterator = requires(T t)
{

{ std::begin(t) } -> std::input_iterator;
};

template <has_iterator T>
auto&& get(T&& t, int i)
{

if constexpr (has_at<T>)
return t.at(i);

else
return *std::next(std::begin(t), i);

}
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Concepts
Even simpler implementation

‚ Concepts can also be evaluated as bool expressions.

‚ This means that we can also use them in if‐statements,
loop conditions, static_assert statements etc.

‚ So we can simplify our code even more by utilizing
constexpr‐if statements.

‚ Here we require T to have iterators, but then we check
in the body if there is an at function. If so, we use that
instead of iterators.
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Concepts
How did we do this before C++ 20?

template <typename T>
auto get_helper(T&& t, int i, int)
-> decltype(( t.at(i) ))

{
return t.at(i);

}

template <typename T>
auto get_helper(T&& t, int i, long)
-> decltype(( *std::next(std::begin(t), i) ))

{
return *std::next(std::begin(t), i);

}

template <typename T>
auto&& get(T&& t, int i)
{
return get_helper(std::forward<T>(t), i, 0);

}
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Concepts
How did we do this before C++ 20?

‚ This is about the same amount of code as the C++ 20
version, but this is more error‐prone and utilizes a lot of
“hacks”.

‚ We also have a lot more power with concepts. Notice
that we are unable to check if std::begin(t) returns
an input iterator or not, but with concepts we can.

‚ In C++ 17 we have to make several overloads and we
have to induce a priority, but with concepts we can just
make one function overload and then specialize it with
concepts. Much simpler.
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Concepts
Requires clause in the wild

template <typename T>
void print(std::ostream& os, T const& data)
requires std::is_class_v<T> &&

requires { os << data; }
{

os << data;
if (requires { T{data}; })
{
os << " (copyable)";

}
}
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Concepts
Requires clause in the wild

‚ A requires clause is just a bool expression, so we can
use them outside the context of concepts.

‚ Parameters are optional for requires clauses.

‚ Here we are using a requires clause to constrain the
template parameter T. We are first checking if T is a
class, and then we make sure that we can print it with
operator<<.

‚ Then we are using it in a normal if‐statement to check if
T has a copy constructor.
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Concepts
Concepts + classes =r

template <typename From, typename To>
concept convertible_to = std::is_convertible_v<From, To>;

template <convertible_to<int> T>
requires std::copy_constructible<T>

class Cls
{
};
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Concepts
Concepts + classes =r

‚ Of course, template parameters for class templates can
also be constrained with the help of concepts.

‚ Notice here that our concept takes two parameters,
From and To.

‚ When we constrain a template parameter with a
concept the first one will always implicitly be the
template parameter itself.

‚ All other template parameters to the concept must
however be set.

‚ So in this case, From is the same as T while To is set to
int.
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Ranges
Example

using namespace std;

vector<int> v { 3, 1, -5, 4 };
sort(begin(v), end(v));
copy(begin(v), end(v),

ostream_iterator<int>{cout, " "});
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Ranges
Example

‚ In this example we sort a vector of integers and print the
result to std::cout.

‚ This is quite a good usage of the STL.

‚ But, it is quite annoying having to write begin(v) and
end(v) whenever we want to do something with the
entire vector v.
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Ranges
Same example in C++ 20

using namespace std;

vector<int> v { 3, 1, -5, 4 };
ranges::sort(v);
ranges::copy(v, ostream_iterator<int>{cout, " "});
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Ranges
Same example in C++ 20

‚ C++ 20 introduces a new concept called ranges.

‚ This allows us to call algorithms with entire containers
instead of having to pass iterators everywhere.

‚ ranges are not supposed to replace iterators, but will
instead complement them.
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Ranges
What are ranges?

template <typename T>
concept range = requires(T& t)
{
std::begin(t);
std::end (t);

};
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Ranges
What are ranges?

‚ A range is a type which we can call std::begin and
std::end on. This means that we can think of ranges as
objects that have an iterator pair. This means that for
example all containers are ranges.

‚ All (most) algorithms now has an iterator version and a
range version.

‚ So what’s the big deal? Sure we get a bit cleaner syntax,
but besides that?
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Ranges
Let’s look at an example from before C++ 20

struct Point
{
int x;
int y;

};

int main()
{
std::vector<Point> points { /* ... */ };

auto filter = [](Point p) { return p.x < 0 || p.y < 0; };

points.erase(
std::remove_if(std::begin(points), std::end(points), filter),
std::end(points));

auto printer = [](Point p) { cout << p.x << ", " << p.y << endl; };

std::for_each(std::begin(points), std::end(points), printer);
}
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Ranges
Let’s look at an example

‚ We remove all points were either x or y are negative and
then print the remaining points. However, this could be
done better for several reasons.

‚ For starters, it is very annoying having to write
std::begin(v) and std::end(v) everytime we want to
operate on the vector.

‚ But there is also a performance issue here: we have to
remove elements from the container, which is quite
slow. For this example wouldn’t it be enough to just not
print the negative values? No need for actual removal.
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Ranges
Enter range adaptors!

struct Point
{
int x;
int y;

};

using namespace std;

int main()
{
vector<Point> const points { /* ... */ };

auto filter = [](Point p) { return p.x >= 0 && p.y >= 0; };

auto result = points | ranges::views::filter(filter);
for (Point p : result)
{
cout << p.x << ", " << p.y << endl;

}

}
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Ranges
Let’s break it down

‚ views

‚ range adaptors
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Ranges
Views

list<int> my_list { 1, 2, 3, 4, 5, 6 };

1 2 3 4 5 6my_list
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Ranges
Views

auto v1 = ranges::views::drop(my_list, 2);

1 2 3 4 5 6my_list
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Ranges
Views

auto v1 = ranges::views::drop(my_list, 2);

1 2 3 4 5 6my_list

v1
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Ranges
Views

auto f = [](int x) { return x % 2 == 0; };
auto v2 = ranges::views::filter(v1, f);

1 2 3 4 5 6my_list

v1
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Views
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Ranges
Views

auto f = [](int x) { return x % 2 == 0; };
auto v2 = ranges::views::filter(v1, f);

1 2 3 4 5 6my_list

v1
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Ranges
Views

auto f = [](int x) { return x % 2 == 0; };
auto v2 = ranges::views::filter(v1, f);

1 2 3 4 5 6my_list

v2
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Ranges
What?

‚ A view is a window into a subset of the elements in some
range. It allows us to construct subranges procedurally.

‚ It’s important to note that a view is much more powerful
than just a pair of iterators. As we saw with
views::filter, it can produce gaps from the original
range.

‚ Note: a view never copies any elements, nor does it
keep track of which elements it is pointing to (as the
image might suggest). Instead, a view is computed lazily.
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Ranges
Lazy computation of views

auto v1 = std::ranges::views::iota(1);
for (int i : v1)
{
cout << i << endl;

}
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Ranges
Lazy computation of views

auto v1 = std::ranges::views::iota(1);
for (int i : v1)
{
cout << i << endl;

}

Infinite loop!
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Ranges
Lazy computation of views

‚ std::ranges::views::iota is a view that lazily
generates a sequence of numbers. In this case it will
generate the numbers: 1, 2, 3, ... and so on forever.

‚ This implies that views doesn’t construct all its elements
in memory, since iota will literally generate numbers
forever!

‚ This means that itmust generate each number as it is
requested. This is what’s meant when we say it is lazy.
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Ranges
Lazy computation of views

auto even = [](int x) { return x % 2 == 0; };

auto v1 = std::ranges::views::iota(1);
auto v2 = std::ranges::views::filter(v1, even);
for (int i : v2)
{
cout << i << endl;

}
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Ranges
Lazy computation of views

auto even = [](int x) { return x % 2 == 0; };

auto v1 = std::ranges::views::iota(1);
auto v2 = std::ranges::views::filter(v1, even);
for (int i : v2)
{
cout << i << endl;

}

Infinite loop!
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Ranges
Lazy computation of views

‚ v2 is also lazily evaluated, but this time we will filter out
all values that are not even.

‚ This means that v2 will generate the numbers
2, 4, 6, ... and so on.

‚ What filter whenever we request a number from it, is
that it will request a number n from v1. If even(n)
returns false it will request a new number and repeat
the process until it retrieves a number for which even
returns true. That number will then be handed to the
caller.
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Ranges
Lazy computation of views

auto even = [](int x) { return x % 2 == 0; };

auto v1 = std::ranges::views::iota(1);
auto v2 = std::ranges::views::filter(v1, even);
auto v3 = std::ranges::views::take(v2, 4);
for (int i : v3)
{
cout << i << endl;

}
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Ranges
Lazy computation of views

auto even = [](int x) { return x % 2 == 0; };

auto v1 = std::ranges::views::iota(1);
auto v2 = std::ranges::views::filter(v1, even);
auto v3 = std::ranges::views::take(v2, 4);
for (int i : v3)
{
cout << i << endl;

}

Halts!
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Ranges
Lazy computation of views

‚ Finally, if we apply take, we will get a terminating loop.

‚ This is because take(v2, 4) will not deliver any more
numbers after the user has requested 4 numbers.

‚ It is still done lazily though. So it doesn’t know what the
next number will be, all it knows is how many have been
requested so far.

‚ In this case it will print: 2, 4, 6, 8 and then terminate.
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Ranges
Let’s break it down

‚ views

‚ range adaptors
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Ranges
Range adaptors!

using namespace std::ranges;

auto even = [](int x) { return x % 2 == 0; };
auto inc = [](int x) { return x + 1; };

auto v1 = views::iota(1);
auto v2 = views::filter(v1, even);
auto v3 = views::transform(v2, inc);
auto v4 = views::take(v3, 10);
for (int i : v4)
{
cout << i << endl;

}
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Ranges
Range adaptors!

using namespace std::ranges;

auto even = [](int x) { return x % 2 == 0; };
auto inc = [](int x) { return x + 1; };

auto v = views::iota(1)
| views::filter(even)
| views::transform(inc)
| views::take(10);

for (int i : v)
{
cout << i << endl;

}
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Ranges
Range adaptors!

‚ We’ve actually already seen a few range adaptors, for
example views::filter, views::take and
views::drop.

‚ A range adaptor takes a range and applies some kind of
operation on it. For example: views::transform takes
a range and applies a callable object on each element,
thus transforming each requested value into a new
value.
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Ranges
Range adaptors!

‚ There are two ways to apply a range adaptor C to a
range called r:

‚ The way we’ve already seen: C(r, parameters...)

‚ Or with operator| like this: r | C(parameters...)

‚ The advantage of operator| is that we can now chain
them range adaptors together without having to create
intermediate views. Like in the second example above.
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Ranges
Let’s not forget that containers are ranges too!

using namespace std;
using namespace std::ranges;

map<string, int> m { /* ... */ };

auto fun = [](pair<string, int> p)
{
return p.first + ": " + to_string(p.second);

};

ranges::copy(m | views::transform(fun) | views::reverse,
ostream_iterator<string>{cout, "\n"});

vector<pair<string, int>> v { begin(m), end(m) };

// with lambda
ranges::sort(v, [](auto a, auto b) { return a.second < b.second; });

ranges::copy(v | views::transform(fun),
ostream_iterator<string>{cout, "\n"});
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Ranges
Let’s not forget that containers are ranges too!

using namespace std;
using namespace std::ranges;

map<string, int> m { /* ... */ };

auto fun = [](pair<string, int> p)
{
return p.first + ": " + to_string(p.second);

};

ranges::copy(m | views::transform(fun) | views::reverse,
ostream_iterator<string>{cout, "\n"});

vector<pair<string, int>> v { begin(m), end(m) };

// with std::less and projection
ranges::sort(v, less<int>{}, &pair<string, int>::second);

ranges::copy(v | views::transform(fun),
ostream_iterator<string>{cout, "\n"});
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Ranges
Projections

‚ Some range algorithms, like ranges::sort, takes an
optional projection parameter.

‚ A projection is pointer to some data member in the
passed in class which is used for comparison.

‚ So instead of creating a lambda which compares based
on the entire object, this allows us to use a comparison
object that operates on that specific data member
directly.
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Modules
Pre C++ 20

// math.h
#ifndef MATH_H
#define MATH_H

#include <vector>
#include <numeric>

template <typename T>
T sum(std::vector<T> v)
{
return std::accumulate(
v.begin(), v.end(), 0);

}
template <typename T>
T average(std::vector<T> v)
{
return sum(v) / v.size();

}

#endif//MATH_H

// main.cc
#include "math.h"

#include <vector>
#include <iostream>

int main()
{
std::vector<float> v { /* ... */ };
std::cout << average(v) << std::endl;

}

// other.cc
#include "math.h"

#include <vector>

// does something with math.h
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Modules
Pre C++ 20

‚ They way we’ve been compiling large projects has been
essentially the same since the inception of C. It is an
archaic build process, meaning compile times are slower
than they need to be.

‚ Since #include is just a copy‐paste idiom, the content of
math.h will be included in both main.cc and
other.cc, meaning the content of math.h is
compiled twice. This can be somewhat mitigated by just
having declarations in the header file, but when we are
dealing with templates this is impossible.
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Modules
Pre C++ 20

‚ When we include library headers like <iostream> we
are therefore forced to recompile the entire content of
the file every time we include it in a translation unit.

‚ Strictly speaking we can at most include a header once
in each translation unit. Due to this we need header
guards, to make sure we only include each header once
in every translation unit.

‚ This means that it is our responsibility to make sure that
everything is included properly.
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Modules
Pre C++ 20

‚ Because of the simplicity of the include model, there is a
greater responsibility on us as programmers. But also,
there are negative efftects on the compile times.

‚ For example, on my system #include <iostream>
includes 18750 lines of code that the compiler must
process each time it is included. This adds up quickly.

‚ Wouldn’t it be better if <iostream> was pre‐compiled?
This is one of the problems modules aim to solve.
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Modules
Enter Modules!

// math.cc
export module math;

import <vector>;
import <numeric>;
using namespace std;

template <typename T>
T sum(vector<T> v)
{
return accumulate(
v.begin(), v.end(), 0);

}

export
template <typename T>
T average(vector<T> v)
{
return sum(v) / v.size();

}

// main.cc
import math;

import <vector>;
import <iostream>;

int main()
{
std::vector<float> v { /* ... */ };
std::cout << average(v) << std::endl;

}

// other.cc
import math;

import <vector>;

// does something with math
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Modules
Explanation

‚ Standard headers can be imported as Header Units, for
example: import <vector>;. This is functionally
equivalent to including the headers, but with the
difference that once a header has been imported
anywhere in the code, it will not be included again.

‚ Instead of dealing with header files, we can create a
Module Implementation file where we export our
module by giving it a name.
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Modules
Explanation

‚ The act of exporting something means we are making it
available outside of the module. Thus anything not
exported will be invisible in any other context. This
means that we can have entities that are hidden from
the API of the module. For example the sum function.

‚ When we import our exported modules we will
automatically have access to everything that was
exported.

‚ Since our module is named, we don’t have to refer to
any files. Instead we can just refer to the module name.
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Modules
Explanation

‚ How we compile projects with modules is dependent on
the compiler.

‚ Currently Microsoft Visual Studio, followed
by clang has the best support for modules. g++ only
has experimental support for modules. If you want to
try it out yourself, I have linked some articles that goes
into more depth on this.
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Modules
Explanation

Some observations:

‚ In module files it is totally fine to do
using namespace std; since it will not leak into the
users code.

‚ Warning: You cannot mix includes and import in a
module file. You should stick to imports if possible. If
you absolutely need to include files there is something
called the Global Module Fragment dedicated for such
things.
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Coroutines
“Generator” function

vector<int> generate_sequence(int start, int count)
{
vector<int> result (count, 0);
for (int i { start }; i < start + count; ++i)
{
result.push_back(i);

}
return result;

}

int main()
{
for (int i : generate_sequence(1, 10))
{
cout << i << endl;

}
}
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Coroutines
“Generator” function

‚ A generator function is something that constructs (or
generates) a sequence of values.

‚ In this example, get_sequence is a function that
generates consecutive integers.

‚ This is a useful abstraction because we can then think of
the whole sequence as a unit, while still only processing
one value at a time.

‚ We saw a good way to do this with ranges earlier, but
can it be done with functions?
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Coroutines
“Generator” function

‚ This is one way to do it with functions.

‚ But it is quite inefficient, because we have to generate
all values eagerly. This means we have to generate all
values and store them in some kind of container.

‚ The reason why we have to do this is because we can
only retrieve a value from a function once it is done.

‚ But what if a function could pause its execution and
gives us a partial result, and then continue where it left
of later on?
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Coroutines
Enter Coroutines!

generator<int> generate_sequence(int start, int count)
{
for (int i { start }; i < start + count; ++i)
{
yield i;

}
}

int main()
{
for (int i : generate_sequence(1, 10))
{
cout << i << endl;

}
}

Note: This is not real C++
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Coroutines
Enter Coroutines!

‚ A coroutine is a generalized function that has some
extended features.

‚ Normally all a function can do to transfer the execution
back to its caller is by returning.

‚ But coroutines introduces other ways to do so. In this
example we are yielding a value from the coroutine.

‚ This means that the function is paused with its current
state stored away somewhere, and control is given back
to whoever called this function. In this case, main.
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Coroutines
Enter Coroutines!

‚ From the callers point‐of‐view this coroutine behaves
like a function: we requested a value, and we got a
value.

‚ But the difference is that when we call the coroutine
again, it will continue where we left of, still keeping
track of its state. This means that we can lazily generate
values from the coroutine.

‚ So no need for generating all the results before
returning to the caller.
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Coroutines
Enter Coroutines!

‚ But what we’ll notice here is that the return type of this
coroutine is set as generator<int>, but we are yielding
int? And we are not even returning anything, so why
does it have a return type?

‚ Well, the problem with coroutines is that they are just
an abstraction built on top of normal functions. This
means that whenever we yield from the coroutine the
caller must receive something from the caller that tells
the caller what is going on.
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Coroutines
Enter Coroutines!

‚ C++ doesn’t want to force you to do this in one specific
way, so because of this each coroutine must have a
handler. In this case our handler is generator<int>.

‚ This is an object that will receive yielded values from the
coroutine. This is what allows us to loop over the results
of the coroutines, even though the coroutine itself never
actually returns anything.

‚ Let’s look at a diagram:
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
for (int i : g)
{
cout << i << endl;

}
}

Note: This is not real C++

Let’s rewrite this code to make it easier to understand.
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

Notice that we only “call” the coroutine once. However,
note that the coroutine isn’t executed yet.
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

The object which gets returned from the coroutine is
called a handler. The coroutine is executed by calling this
object.
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

Promise

g

The handler g has a “Promise” which is where the corou‐
tine will put the yielded value.
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

Promise

g

We can then check: is this “call” to the coroutine still active?
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

Promise

Handle Coroutine state

g

For this to work, g needs to keep track of the current
state of the coroutine. Otherwise it can’t tell if the corou‐
tine is done or not.
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

Promise

Handle Coroutine state

g

Now we call it, thus finally executing the coroutine. This
will yield us an integer value that is placed in the promise.
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

Promise

Handle Coroutine state

g

This means that the coroutine state and the promise must
communicate. So when the coroutine yields, the handler
will then know to place that value in the promise.
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Coroutines
Coroutine handlers

int main()
{
auto g = generate(1, 10);
while (!g.done())
{
cout << g() << endl;

}
}

Note: This is not real C++

Promise

Handle Coroutine state

g

Once the coroutine actually returns, the promise will be
empty, thus informing the caller that the coroutine is
done.
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Coroutines
Real coroutines

generator<int> generate_sequence(int start, int count)
{
for (int i { start }; i < start + count; ++i)
{
co_yield i;

}
co_return;

}
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Coroutines
Real coroutines

‚ The behaviour of the returned handler can vary from
case to case, so C++ gives us the opportunity to
customize its behaviour for our specific coroutines.

‚ Coroutines must be handled seperately. Coroutines are
not normal functions were the keyword returnmeans
exit the function. When we call a coroutine it doesn’t
even execute the code until the handler tells it to, so we
have to make them distinct.

‚ Because of these reasons, coroutines uses their own
keywords: co_return, co_yield and co_await.
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Coroutines
Real coroutines

We will not discuss coroutines in more detail because:

‚ In order to use coroutines we must implement our own
handlers because the standard library does not yet
supply any standard handlers (maybe in C++23?).

‚ Writing your own handler is very hard, so it’s
recommended not to do that.

‚ But there are 3rd party libraries popping up that does
implement different handlers, so we might be able to
use them sooner than C++23!
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