
TDDD38/726G82 ‐
Advanced programming in
C++
Basic C++

Christoffer Holm

Department of Computer and information science



1 / 63

Initial example
What will be printed? Why?

#include <iostream>
using std::cout;

int main()
{
int x { 2 };
if (x = 0)
cout << "x is zero\n";

else
cout << "Value of x: " << x << std::endl;

return 0;
}



2 / 63

Initial example
Why?

‚ The condition contains an assignment

‚ x gets assigned the value 0

‚ assignment returns a reference to x

‚ x is 0 which is convertible to false

‚ conditions in if‐statements are only valid if the
expression is convertible to bool



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



5 / 63

Data types
Type classifications

There are five classifications of data types:

‚ Fundamental types

‚ Array types

‚ Class types

‚ Enum types

‚ Reference/pointer types



6 / 63

Data types
Fundamental types

‚ Integer types (int, unsigned int, short, etc.)

‚ Floating point types (float, double, long double)

‚ Character types (char, wchar_t, unsigned char, etc.)

‚ Other types: bool, void



6 / 63

Data types
Fundamental types

‚ Integer types (int, unsigned int, short, etc.)

‚ Floating point types (float, double, long double)

‚ Character types (char, wchar_t, unsigned char, etc.)

‚ Other types: bool, void



6 / 63

Data types
Fundamental types

‚ Integer types (int, unsigned int, short, etc.)

‚ Floating point types (float, double, long double)

‚ Character types (char, wchar_t, unsigned char, etc.)

‚ Other types: bool, void



6 / 63

Data types
Fundamental types

‚ Integer types (int, unsigned int, short, etc.)

‚ Floating point types (float, double, long double)

‚ Character types (char, wchar_t, unsigned char, etc.)

‚ Other types: bool, void



7 / 63

Data types
Fundamental types

‚ Types that can be used directly

‚ basic building blocks of all other types

‚ Commonly used for arithmetic operations



8 / 63

Data types
Array types

// size = 3, type = float
float farr[3] { 1.2f, 2.3f, 3.4f };

// size = 4, type = char
char carr[] { 'a', 'b', 'c', '\0' };

// size = 4, type = char
char str[] { "abc" };

// prints 'c' (0 is the first element)
std::cout << carr[2] << std::endl;



9 / 63

Data types
Array types

‚ Arrays of a single type

‚ Used for storing a fixed count of values

‚ The size must be known by the compiler during
compilation

‚ The size can be set manually or deduced by the compiler

‚ There are better alternatives in modern C++



10 / 63

Data types
Array types

Some extra notes:

‚ 3.5 is of type double, while 3.5f is of type float

‚ String literals (i.e. "abc") are char‐arrays that ends with
the special character '\0'

‚ This means that carr and str are actually the same
thing

‚ You can access individual elements by index (starting at
0), like this: carr[2] (retrieves the third element)



11 / 63

Data types
Array pointers

int arr1[] { 1, 2, 3 };
int arr2[] { 4, 5, 6 };

int (*ptr)[3]; // pointer to int-array of size 3

ptr = &arr1;
// print 2
std::cout << (*ptr)[1] << std::endl;

ptr = &arr2;
// print 5
std::cout << (*ptr)[1] << std::endl;



12 / 63

Data types
Array pointers

‚ A pointer contains amemory address

‚ It also specifies what type the value it points to have

‚ Normally we can have pointers to variables, like this:

int x { 5 };
int* ptr { &x };

// print value of (i.e. 5)
std::cout << *ptr << std::endl;



13 / 63

Data types
Array pointers

‚ But we can also have pointers to arrays:
int (*ptr)[3];

‚ This will simply contain the address of the first element

‚ However C++ will know that it is an array of the specified
size since we told it that

‚ We can use array pointers just like normal arrays, but
with one added feature: we can change which array it
points to.



14 / 63

Data types
Class types

‚ struct, class

‚ union



14 / 63

Data types
Class types

‚ struct, class

struct Person
{
string name; // class type
int age; // fundamental type

};

‚ union



14 / 63

Data types
Class types

‚ struct, class

‚ union

union JSON
{

double val;
char const* str; // pointer type

};



15 / 63

Data types
Class types

‚ Types composed of several different types (called fields
or data members)

‚ Can contain functions (called member functions)

‚ struct and class have fields that are set at the same
time

‚ union have fields, but only one of them can be set at a
time (they share the same memory)



16 / 63

Data types
Enum types

enum Status // unscoped
{
ERROR,
PENDING,
GRANTED = 10,
DENIED

};

Status status { ERROR };



16 / 63

Data types
Enum types

enum Status : char // unscoped
{
ERROR,
PENDING,
GRANTED = 10,
DENIED

};

Status status { ERROR };



16 / 63

Data types
Enum types

enum Status : char // unscoped
{
ERROR,
PENDING,
GRANTED = 10,
DENIED

};

enum Flags { GOOD, ERROR };

Status status { ERROR }; // Which one?



16 / 63

Data types
Enum types

enum class Status : char // scoped
{
ERROR,
PENDING,
GRANTED = 10,
DENIED

};

enum Flags { GOOD, ERROR };

Status status { Status::ERROR }; // scoped value



17 / 63

Data types
Enum types

‚ A predefined set of discrete values

‚ Each possible value has a name

‚ Is an integral type

‚ There are two types of enums: scoped and unscoped



17 / 63

Data types
Enum types

‚ Enums are implemented by the compiler as integers

‚ Usually implemented as int, but can be specified by the
user (for example enum Status : char)

‚ Each named value gets assigned to a specific integer
value (first one is by‐default 0)

‚ Each value is represented by the previous value + 1 if not
explicitly specified (see GRANTED = 10)



18 / 63

Data types
Unscoped enums

‚ Unscoped enums are the “normal” kind

‚ Each value is a global constant meaning that ERROR will
clash since both Status and Flags contain a value of
that name (notice that thay also have two different
integer representations).

‚ So if you are using unscoped enums you have to be
careful with the naming.



19 / 63

Data types
Scoped enums

‚ Scoped enums forces each named value to be directly
associated with the enum itself. A enum is scoped if the
enum keyword is followed by struct or class, like this:
enum class Status

‚ This means that if we want to refer to a value from for
example Status we have to add Status as a prefix, like
this: Status::ERROR

‚ This is a much safer and easier way to deal with enums
since we now clearly communicate what we are doing.



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



21 / 63

Functions

‚ Function definition

‚ Function declaration

‚ Function overload



21 / 63

Functions

‚ Function definition

int foo(int parameter)
{
return parameter;

}

‚ Function declaration

‚ Function overload



21 / 63

Functions

‚ Function definition

‚ Function declaration

int foo(int parameter);

int foo(int parameter)
{
return parameter;

}

‚ Function overload



21 / 63

Functions

‚ Function definition

‚ Function declaration

‚ Function overload

int foo(int parameter)
{
return parameter;

}

double foo(double parameter)
{
return parameter;

}



21 / 63

Functions

‚ Function definition

‚ Function declaration

‚ Function overload

int foo(int parameter)
{
return parameter;

}

double foo(double a, double b)
{
return a + b;

}



22 / 63

Functions
Why would we separate declaration and definition?

void foo(int x)
{
if (x == 0)
bar(x);

}

void bar(int x)
{
if (x != 0)
foo(x);

}



22 / 63

Functions
Why would we separate declaration and definition?

void foo(int x)
{
if (x == 0)
bar(x);

}

void bar(int x)
{
if (x != 0)
foo(x);

}

Compile error!



23 / 63

Functions
Why would we separate declaration and definition?

‚ The previous example won’t compile:

‚ C++ is a single pass compiled language, meaning the
compiler will process the code from top to bottom once.

‚ This means that when compiling foo the compiler finds
a call to bar which has not yet been defined, so the
compiler doesn’t know what to do.

‚ We could solve this by defining bar first, but then we
would get the same problem with the compiler not
knowing what foo is.

‚ No matter in what order we define these functions, this
will not work.



24 / 63

Functions
Why would we separate declaration and definition?

void bar(int x); // forward declaration

void foo(int x)
{
if (x == 0)
bar(x);

}

void bar(int x)
{
if (x != 0)
foo(x);

}



25 / 63

Functions
Why would we separate declaration and definition?

‚ If we declare bar before we define foo then the
compiler knows what bar is.

‚ This is enough for the compiler to know that the
function call to bar in foo is correct.

‚ It is highly recommended to declare all your functions
before defining them so that you avoid these types of
problems.



26 / 63

Functions
What will happen? Why?

void foo(int) { cout << "int" << endl; }

void foo(double) { cout << "double" << endl; }

int main()
{
foo(5);
foo(2.7);
foo(true);

}



27 / 63

Functions
Function pointers

int add(int x, int y)
{
return x + y;

}

int sub(int x, int y)
{
return x - y;

}

int main()
{
// pointer to function taking
// two int:s and returning int
int (*ptr)(int, int);

ptr = add;
// print 2
std::cout << ptr(1, 1) << std::endl;

ptr = sub;
// print 0
std::cout << ptr(1, 1) << std::endl;

}



28 / 63

Functions
Function pointers

‚ In C++ there are two types of pointers: data pointers
and function pointers

‚ Data pointers contain the address of some object (or
collection of objects in the case of array pointers)



29 / 63

Functions
Function pointers

‚ But there are also function pointers in C++

‚ Function pointers contain the address of some function
(machine code)

‚ A function pointer acts just as a function meaning we
can call it and so on

‚ But instead of calling a fixed function it will call the one
it points to

‚ A function pointer must specify the return type and
parameters.



30 / 63

Functions
Function pointers

‚ Because of this, the syntax is quite complex:
int (*ptr)(int, int);

‚ A function pointer must point to a function that have
exactly the specified parameters and return type.

‚ We can also have pointers to functions that doesn’t take
parameters and doesn’t return anything:
void (*ptr)();

‚ We can also create anonymous function pointers:
void (*)() and/or void()



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



32 / 63

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ Value initialization: int x{};

‚ Direct initialization: int x(5);

‚ List initialization: int x{5};



32 / 63

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ initialize an object by copying another object
‚ will try to implicitly convert a value to make it work
‚ tries to call any non‐explicit constructors with one

parameter

‚ Value initialization: int x{};

‚ Direct initialization: int x(5);

‚ List initialization: int x{5};



32 / 63

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ Value initialization: int x{};

‚ call the default constructor
‚ if no default constructor exists, it will default

initialize the object (set all bytes to zero)

‚ Direct initialization: int x(5);

‚ List initialization: int x{5};



33 / 63

Initialization
Direct vs. List initialization

What will they try to do?

Direct initialization
1. appropriate constructor
2. aggregate initialization
3. copy initialization

Narrowing conversions are
allowed.

List initialization
1. aggregate initialization
2. appropriate constructor
3. copy initialization

Narrowing conversions are
prohibited.

List initialization is recommended



33 / 63

Initialization
Direct vs. List initialization

What will they try to do?

Direct initialization
1. appropriate constructor
2. aggregate initialization
3. copy initialization

Narrowing conversions are
allowed.

List initialization
1. aggregate initialization
2. appropriate constructor
3. copy initialization

Narrowing conversions are
prohibited.

List initialization is recommended



33 / 63

Initialization
Direct vs. List initialization

What will they try to do?

Direct initialization
1. appropriate constructor
2. aggregate initialization
3. copy initialization

Narrowing conversions are
allowed.

List initialization
1. aggregate initialization
2. appropriate constructor
3. copy initialization

Narrowing conversions are
prohibited.

List initialization is recommended



34 / 63

Initialization
Aggregate initialization

struct My_Struct
{
int a;
int b;
double c;
char d;

};

My_Struct obj { 1, 2, 3.4, '5' };



34 / 63

Initialization
Aggregate initialization

struct My_Struct
{
int a;
int b;
double c;
char d;

};

My_Struct obj { 1, 2, 3.4, '5' };



34 / 63

Initialization
Aggregate initialization

struct My_Struct
{
int a;
int b;
double c;
char d;

};

My_Struct obj { 1, 2, 3.4, '5' };



34 / 63

Initialization
Aggregate initialization

struct My_Struct
{
int a;
int b;
double c;
char d;

};

My_Struct obj { 1, 2, 3.4, '5' };



34 / 63

Initialization
Aggregate initialization

struct My_Struct
{
int a;
int b;
double c;
char d;

};

My_Struct obj { 1, 2, 3.4, '5' };



35 / 63

Initialization
Be careful with paranthesis in initialization

// default initialized
// int variable
int x {};

// function returning int
// taking no parameters
int x ();



36 / 63

Initialization
Be careful with paranthesis in initialization

‚ Initialization with curly braces are recommended

‚ Partly because then the compiler will warn us when we
have narrowing conversions

‚ But also because wemust have curly braces when
default‐initializing a variable: parenthesis will turn the
variable into a function instead which will lead to very
confusing error messages.



37 / 63

Initialization
What will happen?

int main()
{
int x{};
cout << x << " ";
int y = 3.5;
cout << y << " ";
int z {3.5};
cout << z << endl;

}



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



39 / 63

Value categories
What is the difference?

int x { 3 };

x = 7; // works
7 = x; // doesn't work

int array[3] { 1, 2, 3 };

arr[2] = x + 12; // works
x + 12 = arr[2]; // doesn't work

x = int{}; // works
int{} = x; // doesn't work



40 / 63

Value categories
There seems to be two kinds of expressions here

Can be to the left
‚ x
‚ arr[2]
‚ *ptr (pointer)

left‐hand‐side value (lvalue)

Can only be to the right
‚ 7
‚ x + 12
‚ int{}

right‐hand‐side value (rvalue)



40 / 63

Value categories
There seems to be two kinds of expressions here

Can be to the left
‚ x
‚ arr[2]
‚ *ptr (pointer)

left‐hand‐side value (lvalue)

Can only be to the right
‚ 7
‚ x + 12
‚ int{}

right‐hand‐side value (rvalue)



41 / 63

Value categories
lvalues

‚ lvalues are expression that will refer to the same specific
object every time we use it.

‚ So something that has a memory address and a name is
always an lvalue, examples: x, arr, std::cout, etc.

‚ But things without a name can also be lvalues, for
example: arr[2], *ptr (dereference pointer) etc.

‚ We say that lvalues have identity (the expression refers
to a specific object)



42 / 63

Value categories
rvalues

‚ rvalues are generally those values that are not lvalues.

‚ More specifically we can think of them as temporary
values, meaning they have no identity (the expression
refers to a specific value rather than object)

‚ For example: when evaluating the expression x + 1 a
new temporary value is created, so we never refer to the
same object as earlier.

‚ Literals are rvalues: 5 3.14f "my string" etc.



43 / 63

Value categories
Expressions

‚ each expression in C++ have a type: specifically the type
that is returned from the expression

‚ example: 2*(1+1) have the type int

‚ But they also have a value category which determines
certain properties: can we assign to it? Does they value
have identity?

‚ lvalues and rvalues are generally what is needed, but
there are more fine‐grained value categories as well.



44 / 63

Value categories
Expressions

expression

glvalue rvalue

lvalue prvaluexvalue



45 / 63

Value categories
Expressions

‚ glvalue
‚ lvalue
‚ xvalue
‚ prvalue



45 / 63

Value categories
Expressions

‚ glvalue
‚ generalied left‐hand‐size value;
‚ denotes an object with identity
‚ example: given a variable x, the expression x will

be a glvalue
‚ lvalue
‚ xvalue
‚ prvalue



45 / 63

Value categories
Expressions

‚ glvalue
‚ lvalue

‚ denote all glvalues that are not xvalues
‚ xvalue
‚ prvalue



45 / 63

Value categories
Expressions

‚ glvalue
‚ lvalue
‚ xvalue

‚ expiring value
‚ denotes an object bound to an rvalue reference

(see next seminar for details)
‚ example: static_cast<int&&>(x), where x is of

type int
‚ prvalue



45 / 63

Value categories
Expressions

‚ glvalue
‚ lvalue
‚ xvalue
‚ prvalue

‚ pure right‐hand‐side value
‚ a value literal
‚ the value of an expression
‚ can be used to initialize glvalues
‚ example: 5, true, nullptr
‚ example: x+1, where x is of type int



45 / 63

Value categories
Expressions

‚ glvalue
‚ lvalue
‚ xvalue
‚ prvalue

The term rvalue refers to both xvalues and prvalues.



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



47 / 63

Conversions
Promotions and narrowing conversions

Conversion rank:

bool < char < short < int < long < long long

Ð Narrowing (explicit) | Promotion (implicit) Ñ



47 / 63

Conversions
Promotions and narrowing conversions

Conversion rank:
unsigned char < unsigned short < unsigned int < unsigned long < unsigned long long

Ð Narrowing (explicit) | Promotion (implicit) Ñ



47 / 63

Conversions
Promotions and narrowing conversions

Conversion rank:

float < double < long double

Ð Narrowing (explicit) | Promotion (implicit) Ñ



48 / 63

Conversions
Promotions and narrowing conversions

‚ There are many different numeric types in C++

‚ Mainly two categories: integers and floating‐point
numbers

‚ Within each category there are differently sized types
that can be converted between each other

‚ The compiler is always allowed to implicitly promote a
value to a larger type if it needs to

‚ But it is never allowed to silently perform a narrowing
conversion (i.e. convert it to a smaller type)



49 / 63

Conversions
Promotions and narrowing conversions

‚ Promoting a type is always OK since whatever value we
represent is guaranteed to fit in a larger type

‚ While narrowing conversions can be quite dangerous
since certain values cannot be represented by a smaller
type.

‚ For example: The larget value char can represent is 127,
so what will happen if I try to convert an int of value
378 to char?

‚ No clear answer since this is undefined behaviour.



50 / 63

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ boolean conversions



50 / 63

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ lvalues of arrays or functions decays to pointers;
‚ arrays becomes a pointer to the first element;
‚ functions become pointers to the code.

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ boolean conversions



50 / 63

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral types smaller than int can be promoted
into int;

‚ float can be promoted to double;
‚ enum types can be promoted to its underlying type.

‚ integral and floating conversions

‚ boolean conversions



50 / 63

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ Coresponds to all non‐promotions between integral
or floating point types;

‚ Conversion rank denotes the “size”;
‚ long long > long > int > short > char > bool.
‚ long double > double > float

‚ boolean conversions



50 / 63

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ boolean conversions

‚ integral types and pointers can be converted to
bool;

‚ all zero values (0 and nullptr) are false;
‚ all non‐zero values are true.



51 / 63

Conversions
What will happen? Why?

int main()
{
int array[5] {1,2,3,4,5};
cout << array << endl;

}



52 / 63

Conversions
What will happen? Why?

int main()
{
char str[4] {'h', 'i', '!', '\0'};
cout << str << endl;

}



53 / 63

Conversions
What will happen? Why?

void foo() { cout << "foo" << endl; }

int main()
{
cout << foo << endl;

}



54 / 63

Conversions
What will happen? Why?

int main()
{
int var (int());
cout << var << endl;

}



55 / 63

Conversions
Most Vexing Parse

‚ This is sometimes called the most vexing parse;

‚ Declarations are prefered over definitions;

‚ Ambiguity is a problem in C++;

‚ A lot of ambiguity is resolved by using
brace‐initialization whenever possible.



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



57 / 63

Memory Management & Pointers
What will happen? Why?

int& get()
{
int x{5};
return x;

}

int main()
{
cout << get() << endl;

}



58 / 63

Memory Management & Pointers
What will happen? Why?

int const* get()
{
return new int{5};

}

int main()
{
cout << *get() << endl;

}



59 / 63

Memory Management & Pointers
Manual Memory Management

int const* get()
{
return new int{5};

}

int main()
{
int const* const x{get()};
cout << x << endl;
delete x;

}



60 / 63

Memory Management & Pointers
Pointers vs. Arrays

int main()
{
int static_array[5];
int* dynamic_array {new int[5]};
cout << sizeof(static_array) << " ";
cout << sizeof(dynamic_array) << endl;
delete[] dynamic_array;

}



1 Data types
2 Functions
3 Initialization
4 Value categories
5 Conversions
6 Memory & pointers (Bonus)
7 Command‐Line Arguments (Bonus)



62 / 63

Command‐Line Arguments

int main(int argc, char* argv[])
{
if (argc != 3)
{
cerr << "Wrong argument count!" << endl;
return 1;

}
for (int arg{}; arg < argc; ++arg)
cout << argv[arg] << endl;

return 0;
}



62 / 63

Command‐Line Arguments

int main(int argc, char* argv[])
{
if (argc != 3)
{
cerr << "Wrong argument count!" << endl;
return 1;

}
for (int arg{}; arg < argc; ++arg)
cout << argv[arg] << endl;

return 0;
}

$ a.out a b c



62 / 63

Command‐Line Arguments

$ a.out a b c
a.out
a
b
c



63 / 63

Command‐Line Arguments
What is argv?

a . o u t \0 a \0 b \0 c \0

argv: argc: 4



www.liu.se

www.liu.se

	Data types
	Functions
	Initialization
	Value categories
	Conversions
	Memory & pointers (Bonus)
	Command-Line Arguments (Bonus)

