
TDDD38/726G82:
Adv. Programming in C++
Templates II

Christoffer Holm

Department of Computer and information science



1 Class Templates
2 Variadic Templates
3 Template Usage & Error checking
4 Type Traits Intro
5 Fold Expressions



1 Class Templates
2 Variadic Templates
3 Template Usage & Error checking
4 Type Traits Intro
5 Fold Expressions



3 / 56

Class Templates
Basic Class Templates

1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 static size_t size()
8 {
9 return N;
10 }
11
12 T& operator[](size_t i)
13 {
14 return data[i];
15 }
16 private:
17 T data[N]{};
18 };



4 / 56

Class Templates
Basic Class Templates

• class templates are not classes;
• they are templates for generating classes during

instantiation;
• member functions are not necessarily function

templates; they are only generated whenever the class
template is instantiated.



5 / 56

Class Templates
Member Functions

array.h
1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 static size_t size();
8 T& operator[](size_t i);
9 private:
10 T data[N]{};
11 };
12
13 #include "array.tcc"



5 / 56

Class Templates
Member Functions

array.h
1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 static size_t size();
8 T& operator[](size_t i);
9 private:
10 T data[N]{};
11 };
12
13 #include "array.tcc"

array.tcc
1 template <typename T, size_t N>
2 size_t Array<T, N>::size()
3 {
4 return N;
5 }
6
7 template <typename T, size_t N>
8 T& Array<T, N>::operator[](size_t i)
9 {

10 return data[i];
11 }



6 / 56

Class Templates
Member Functions

• It can be useful to separate the class template
definition and the member function definitions;

• just as with function templates, the compiler must
know everything about a class template before it is
able to instantiate the class;

• because of this we should include the member function
definition file in the header file.



7 / 56

Class Templates
Member Functions

• Member functions depend on the class template
arguments;

• since the class templates depends on the parameters,
we must include them in the qualified name.

• therefore we must use templates to specify these
instantiation arguments (even though the member
function itself is not a template).



8 / 56

Class Templates
Instantiation

1 #include "array.h"
2
3 int main()
4 {
5 Array<int, 3> arr;
6 for (size_t i{0}; i < arr.size(); ++i)
7 {
8 arr[i] = i;
9 }

10 }



9 / 56

Class Templates
Instantiation

• Instantiating a class template will generate a distinct
class for each set of unique template parameters;

• since the template parameters are bound to the type
we can then proceed to use the member functions as
normal, no need to supply the template parameters.



10 / 56

Class Templates
Member Function Templates

array.h
1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 // ...
8 template <size_t M>
9 Array<T, N+M> concat(Array<T, M> const& other);
10 // ...
11 };
12
13 #include "array.tcc"



10 / 56

Class Templates
Member Function Templates

array.tcc
1 // ...
2 template <typename T, size_t N>
3 template <size_t M>
4 Array<T, N+M> Array<T, N>::concat(Array<T, M> const& other)
5 {
6 Array<T, N+M> result;
7 for (size_t i{0}; i < N; ++i)
8 {
9 result[i] = data[i];
10 }
11 for (size_t i{0}; i < M; ++i)
12 {
13 result[N + i] = other[i];
14 }
15 return result;
16 }
17 // ...



11 / 56

Class Templates
Member Function Templates

• Member functions can themselves be templates (see
concat()).

• In that case we are generating one member function for
each unique set of template parameters.

• This means that a member function template depends on
two sets of template parameters: one set for the class
template and the template parameters for the function.

• Both of these parameter sets must be specified separately
when defining the member function template.



12 / 56

Class Templates
Specialization

1 template<>
2 class Array<int, 0>
3 {
4 public:
5 static size_t size()
6 {
7 return 0;
8 }
9 int& operator[](size_t i)

10 {
11 throw std::out_of_range{"No elements"};
12 }
13 };



13 / 56

Class Templates
Specialization

• Just like with template functions (you will be hearing
this alot), you can specialize your class templates for
specific template parameters;

• this is used a lot more than explicit function template
specialization, since there is no way to overload classes;

• whenever a class template is instantiated the compiler
will look for specializations;

• Warning: the specialization should have been declared
before the instantiation.



14 / 56

Class Templates
Partial Specialization

1 template<typename T>
2 class Array<T, 0>
3 {
4 public:
5 static size_t size()
6 {
7 return 0;
8 }
9 T& operator[](size_t i)

10 {
11 throw std::out_of_range{"No elements"};
12 }
13 };



15 / 56

Class Templates
Partial Specialization

• One thing that class templates can do which function
templates are unable to do, is partial specialization;

• this allows you to only specialize a subset of the
template parameters;

• it can also be used to narrow the possibilites of a
template parameter (this will come later).



16 / 56

Class Templates
Partial Specialization Restrictions

• Cannot be identical to the primary templates
parameter list;

• Must be more specialized than the primary template;
• No default arguments are allowed;
• Each nontype argument must be deducible by the

compiler;
• Nontype parameters cannot be specialized if other

template parameters depend on them.



17 / 56

Class Templates
What will be printed? Why?

1 template <typename T, int N>
2 struct Cls
3 { static int const id{1}; };
4
5 template <typename T>
6 struct Cls<T, 0>
7 { static int const id{2}; };
8
9 template <int N>
10 struct Cls<int, N>
11 { static int const id{3}; };
12
13 int main()
14 {
15 cout << Cls<double, 1>::id << ' '
16 << Cls<int , 1>::id << ' '
17 << Cls<double, 0>::id << ' '
18 << Cls<int , 0>::id << endl;
19 }



1 Class Templates
2 Variadic Templates
3 Template Usage & Error checking
4 Type Traits Intro
5 Fold Expressions



19 / 56

Variadic Templates
Initialization of Array

1 #include "array.h"
2
3 int main()
4 {
5 Array<int, 3> arr{1,2,3};
6 }



20 / 56

Variadic Templates
Variadic Templates

array.h
1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 Array() = default;
8
9 template <typename... Ts>
10 Array(Ts... list)
11 : data{list...}
12 { }
13 // ...
14 };
15
16 #include "array.tcc"



21 / 56

Variadic Templates
Parameter Pack

• typename... Ts
• Ts... list
• list...



21 / 56

Variadic Templates
Parameter Pack

• typename... Ts
• Template parameter pack;
• a template parameter which takes zero or more

arguments.
• Ts... list
• list...



21 / 56

Variadic Templates
Parameter Pack

• typename... Ts
• Ts... list

• Function parameter pack;
• Function parameter that takes zero or more

arguments.
• list...



21 / 56

Variadic Templates
Parameter Pack

• typename... Ts
• Ts... list
• list...

• Parameter pack expansion;
• Expand to a comma‐separated list of zero or more

values;
• the type of these values will correspond to the

types in Ts...
• only works inside lists;
• Can generate a comma separated list where the

comma is a list delimeter.



22 / 56

Variadic Templates
Parameter Pack

1 template <typename T, size_t N>
2 template <typename... Ts>
3 Array<T, N>::Array(Ts... list)
4 : data{list...}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2 template <typename... Ts>
3 Array<int, 3>::Array(Ts... list)
4 : data{list...}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2 template <typename T1, typename T2, typename T3>
3 Array<int, 3>::Array(Ts... list)
4 : data{list...}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2 template <typename T1, typename T2, typename T3>
3 Array<int, 3>::Array(T1 l1, T2 l2, T3 l3)
4 : data{list...}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2 template <typename T1, typename T2, typename T3>
3 Array<int, 3>::Array(T1 l1, T2 l2, T3 l3)
4 : data{l1, l2, l3}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2
3 Array<int, 3>::Array(int l1, int l2, int l3)
4 : data{l1, l2, l3}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2
3 Array<int, 3>::Array(int l1, char const* l2, int l3)
4 : data{l1, l2, l3}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,"2",3};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2
3 Array<int, 3>::Array(int l1, char const* l2, int l3)
4 : data{l1, l2, l3}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,"2",3};
10 }

Compile Error



22 / 56

Variadic Templates
Parameter Pack

1
2
3 Array<int, 3>::Array(int l1, int l2, int l3, int l4)
4 : data{l1, l2, l3, l4}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3,4};
10 }



22 / 56

Variadic Templates
Parameter Pack

1
2
3 Array<int, 3>::Array(int l1, int l2, int l3, int l4)
4 : data{l1, l2, l3, l4}
5 { }
6
7 int main()
8 {
9 Array<int, 3> arr{1,2,3,4};
10 }

Compile Error



1 Class Templates
2 Variadic Templates
3 Template Usage & Error checking
4 Type Traits Intro
5 Fold Expressions



24 / 56

Template Usage & Error checking
Variadic Recursion

array.h
1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 // ...
8 template <typename... Ts>
9 void set(Ts... list);
10 // ...
11 };
12
13 #include "array.tcc"



24 / 56

Template Usage & Error checking
Variadic Recursion

array.h
1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 // ...
8 template <typename... Ts>
9 void set(Ts... list);
10 // ...
11 };
12
13 #include "array.tcc"

array.tcc
1 // ...
2 template <typename T, size_t N>
3 template <typename... Ts>
4 void Array<T, N>::set(Ts... list)
5 {
6 // ???
7 }
8 // ...



25 / 56

Template Usage & Error checking
Variadic Recursion

• There is a way to unpack the parameter pack;

• with recursion!



25 / 56

Template Usage & Error checking
Variadic Recursion

• There is a way to unpack the parameter pack;
• with recursion!



26 / 56

Template Usage & Error checking
Variadic Recursion

1 template <typename... Ts>
2 void fun(Ts... list)
3 {
4 fun_helper(list...);
5 }
6
7 // this is used for recursing through the parameter pack
8 template <typename T, typename... Ts>
9 void fun_helper(T first, Ts... rest)
10 {
11 // do thing with first here
12
13 // drop the first element and continue
14 fun_helper(rest...);
15 }
16
17 // base case
18 void fun_helper()
19 { }



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4); Ts = {int, char const*, double}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4); Ts = {int, char const*, double}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);
fun_helper(1, "2", 3.4);

Ts = {int, char const*, double}
First = int, Rest = {char const*, double}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);
fun_helper(1, "2", 3.4);

Ts = {int, char const*, double}
First = int, Rest = {char const*, double}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);

Ts = {int, char const*, double}
First = int, Rest = {char const*, double}
First = char const*, Rest = {double}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);

Ts = {int, char const*, double}
First = int, Rest = {char const*, double}
First = char const*, Rest = {double}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);
fun_helper(3.4);

Ts = {int, char const*, double}
First = int, Rest = {char const*, double}
First = char const*, Rest = {double}
First = double, Rest = {}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);
fun_helper(3.4);

Ts = {int, char const*, double}
First = int, Rest = {char const*, double}
First = char const*, Rest = {double}
First = double, Rest = {}



27 / 56

Template Usage & Error checking
Variadic Recursion

fun(1, "2", 3.4);
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);
fun_helper(3.4);
fun_helper();

Ts = {int, char const*, double}
First = int, Rest = {char const*, double}
First = char const*, Rest = {double}
First = double, Rest = {}



28 / 56

Template Usage & Error checking
Variadic Recursion

Let’s use this technique!



29 / 56

Template Usage & Error checking
Variadic Recursion

array.h
1 #include <cstddef> // size_t
2
3 template <typename T, size_t N>
4 class Array
5 {
6 public:
7 // ...
8 template <typename... Ts>
9 void set(Ts... list);
10 // ...
11 private:
12 void set_helper(size_t i);
13 template <typename First, typename... Rest>
14 void set_helper(size_t i, First first, Rest... rest);
15 // ...
16 };
17
18 #include "array.tcc"



30 / 56

Template Usage & Error checking
Variadic Recursion

array.tcc
1 template <typename T, size_t N>
2 template <typename... Ts>
3 void Array<T, N>::set(Ts... list)
4 {
5 set_helper(0, list...);
6 }
7
8 template <typename T, size_t N>
9 void Array<T, N>::set_helper(size_t)
10 { }
11
12 template <typename T, size_t N>
13 template <typename First, typename... Rest>
14 void Array<T, N>::set_helper(size_t i, First first, Rest... rest)
15 {
16 data[i] = first;
17 set_helper(i+1, rest...);
18 }



31 / 56

Template Usage & Error checking
Variadic Recursion

1 int main()
2 {
3 Array<int, 3> arr;
4 arr.set(1,2,3);
5 }



31 / 56

Template Usage & Error checking
Variadic Recursion

1 int main()
2 {
3 Array<int, 3> arr;
4 arr.set(1,2,3);
5 }

Nice!



31 / 56

Template Usage & Error checking
Variadic Recursion

1 int main()
2 {
3 Array<int, 3> arr;
4 arr.set(1,2,3,4);
5 }



31 / 56

Template Usage & Error checking
Variadic Recursion

1 int main()
2 {
3 Array<int, 3> arr;
4 arr.set(1,2,3,4);
5 }

Compiles!



31 / 56

Template Usage & Error checking
Variadic Recursion

1 int main()
2 {
3 Array<int, 3> arr;
4 arr.set(1,2,3,4);
5 }

Huh?!



32 / 56

Template Usage & Error checking
Not an error?

• The compiler doesn’t perform range checking

• So we have to implement it ourselves
• ...But how do we check the number of arguments?



32 / 56

Template Usage & Error checking
Not an error?

• The compiler doesn’t perform range checking
• So we have to implement it ourselves

• ...But how do we check the number of arguments?



32 / 56

Template Usage & Error checking
Not an error?

• The compiler doesn’t perform range checking
• So we have to implement it ourselves
• ...But how do we check the number of arguments?



33 / 56

Template Usage & Error checking
sizeof...

• sizeof... takes a parameter pack;
• return how many elements there are in the give

parameter pack;
• will be evaluated during compilation.



34 / 56

Template Usage & Error checking
sizeof...

1 template <typename... Ts>
2 size_t parameter_count(Ts... list)
3 {
4 return sizeof...(list);
5 }



35 / 56

Template Usage & Error checking
But how does this help us?

That’s nice and all, but how do we report the error?



36 / 56

Template Usage & Error checking
static_assert

• static_assert takes two parameters;
• a bool which is evaluated during compilation;
• amessage which is displayed during compilation if the
bool is false;

• static_asserts that fail will halt the compilation.



37 / 56

Template Usage & Error checking
static_assert

1 template <int N>
2 void check()
3 {
4 static_assert(N > 0, "N must be positive");
5 }
6
7 int main()
8 {
9 check<2>(); // no error

10 check<-2>(); // error!
11 }



38 / 56

Template Usage & Error checking
static_assert

$ g++ static_assert.cc
static_assert.cc: In instantiation of ‘void check() [with int N = -2]’:
static_assert.cc:10:13: required from here
static_assert.cc:4:3: error: static assertion failed: N must be positive

static_assert(N > 0, "N must be positive");
^~~~~~~~~~~~~



39 / 56

Template Usage & Error checking
Putting it all together!

array.tcc
1 template <typename T, size_t N>
2 template <typename... Ts>
3 void Array<T, N>::set(Ts... list)
4 {
5 static_assert(sizeof...(list) <= N,
6 "Too many elements");
7 set_helper(0, list...);
8 }



40 / 56

Template Usage & Error checking

That’s all folks!



40 / 56

Template Usage & Error checking

That’s all folks!
Now wait a m

inute...



41 / 56

Template Usage & Error checking
What happens if we do this?

1 #include "array.h"
2
3 int main()
4 {
5 Array<int, 3> arr;
6 arr.set(1,"2",3);
7 }



42 / 56

Template Usage & Error checking
Errors!

$ g++ array.cc -std=c++17
In file included from array.h:33:0,

from array.cc:1:
array.tcc: In instantiation of ‘void Array<T, N>::set_helper(size_t, First, Rest ...)
[with First = const char*; Rest = {}; T = int; long unsigned int N = 3; size_t = long unsigned int]':
array.tcc:24:15: recursively required from ‘void Array<T, N>::set_helper(size_t, First, Rest ...)
[with First = int; Rest = {const char*}; T = int; long unsigned int N = 3; size_t = long unsigned int]'
array.tcc:24:15: required from ‘void Array<T, N>::set_helper(size_t, First, Rest ...)
[with First = int; Rest = {int, const char*}; T = int; long unsigned int N = 3; size_t = long unsigned int]'
array.tcc:16:15: required from ‘void Array<T, N>::set(Ts ...)
[with Ts = {int, int, const char*}; T = int; long unsigned int N = 3]'
array.cc:10:23: required from here
array.tcc:23:13: error: invalid conversion from ‘const char*' to ‘int' [-fpermissive]

data[i] = head;
~~~~~~~~^~~~~~



1 Class Templates
2 Variadic Templates
3 Template Usage & Error checking
4 Type Traits Intro
5 Fold Expressions



44 / 56

Type Traits Intro
How do we produce nicer errors?

• The <type_traits> header might be helpful

• <type_traits> is used to check various properties
about types during compilation

• Look at cppreference for a complete list
• We will look at std::is_same

https://en.cppreference.com/w/cpp/header/type_traits


44 / 56

Type Traits Intro
How do we produce nicer errors?

• The <type_traits> header might be helpful
• <type_traits> is used to check various properties

about types during compilation

• Look at cppreference for a complete list
• We will look at std::is_same

https://en.cppreference.com/w/cpp/header/type_traits


44 / 56

Type Traits Intro
How do we produce nicer errors?

• The <type_traits> header might be helpful
• <type_traits> is used to check various properties

about types during compilation
• Look at cppreference for a complete list

• We will look at std::is_same

https://en.cppreference.com/w/cpp/header/type_traits


44 / 56

Type Traits Intro
How do we produce nicer errors?

• The <type_traits> header might be helpful
• <type_traits> is used to check various properties

about types during compilation
• Look at cppreference for a complete list
• We will look at std::is_same

https://en.cppreference.com/w/cpp/header/type_traits


45 / 56

Type Traits Intro
Simplified implementation of std::is_same

1 template <typename T, typename U>
2 struct is_same
3 {
4 static bool const value{false};
5 };
6
7 template <typename T>
8 struct is_same<T, T>
9 {

10 static bool const value{true};
11 };



46 / 56

Type Traits Intro
Using std::is_same

1 #include <type_traits>
2 int main()
3 {
4 // true
5 bool a{std::is_same<int, int>::value};
6 // false
7 bool b{std::is_same<int, double>::value};
8 }



47 / 56

Type Traits Intro
Type Traits

• <type_traits> was introduced in C++11
• got some nice extensions in C++14
• is_same_v<T,U> instead of
is_same<T,U>::value

• We will talk more about <type_traits> later



1 Class Templates
2 Variadic Templates
3 Template Usage & Error checking
4 Type Traits Intro
5 Fold Expressions



49 / 56

Fold Expressions
Fold expressions

• In C++17 fold expressions were introduced
• A way to operate on all values in a parameter pack
• Simplifies code significantly, since we do not have to

always rely on recursive function templates



50 / 56

Fold Expressions
Fold expression syntax

1 template <typename... Args>
2 void foo(Args... args)
3 {
4 (f(args) + ...); // unary right fold
5 (... - f(args)); // unary left fold
6 (f(args) + ... + 5); // binary right fold
7 (0 * ... * f(args)); // binary left fold
8 }



51 / 56

Fold Expressions
Fold expression

For args = {1,2,3,4}:

(args + ...) ==

1 + (2 + (3 + 4))

(... - args) ==

((1 - 2) - 3) - 4

(args + ... + 5) ==

1 + (2 + (3 + (4 + 5)))

(0 * ... * args) ==

(((0 * 1) * 2) * 3) * 4



51 / 56

Fold Expressions
Fold expression

For args = {1,2,3,4}:

(args + ...) == 1 + (2 + (3 + 4))

(... - args) ==

((1 - 2) - 3) - 4

(args + ... + 5) ==

1 + (2 + (3 + (4 + 5)))

(0 * ... * args) ==

(((0 * 1) * 2) * 3) * 4



51 / 56

Fold Expressions
Fold expression

For args = {1,2,3,4}:

(args + ...) == 1 + (2 + (3 + 4))

(... - args) == ((1 - 2) - 3) - 4

(args + ... + 5) ==

1 + (2 + (3 + (4 + 5)))

(0 * ... * args) ==

(((0 * 1) * 2) * 3) * 4



51 / 56

Fold Expressions
Fold expression

For args = {1,2,3,4}:

(args + ...) == 1 + (2 + (3 + 4))

(... - args) == ((1 - 2) - 3) - 4

(args + ... + 5) == 1 + (2 + (3 + (4 + 5)))

(0 * ... * args) ==

(((0 * 1) * 2) * 3) * 4



51 / 56

Fold Expressions
Fold expression

For args = {1,2,3,4}:

(args + ...) == 1 + (2 + (3 + 4))

(... - args) == ((1 - 2) - 3) - 4

(args + ... + 5) == 1 + (2 + (3 + (4 + 5)))

(0 * ... * args) == (((0 * 1) * 2) * 3) * 4



52 / 56

Fold Expressions
Applying fold expressions

1 template <typename T, size_t N>
2 template <typename... Ts>
3 void Array<T, N>::set(Ts... list)
4 {
5 // ...
6 static_assert((std::is_same_v<T, Ts> && ...),
7 "Elements must be of same type");
8 set_helper(0, list...);
9 }



53 / 56

Fold Expressions
Fold expression expansion

For T = int and Ts = { int, char }:

std::is_same_v<T, Ts> && ...



53 / 56

Fold Expressions
Fold expression expansion

For T = int and Ts = { int, char }:

std::is_same_v<int, Ts> && ...



53 / 56

Fold Expressions
Fold expression expansion

For T = int and Ts = { int, char }:

std::is_same_v<int, int> && std::is_same_v<int, char>



53 / 56

Fold Expressions
Fold expression expansion

For T = int and Ts = { int, char }:

std::is_same_v<int, int> && false



53 / 56

Fold Expressions
Fold expression expansion

For T = int and Ts = { int, char }:

true && false



53 / 56

Fold Expressions
Fold expression expansion

For T = int and Ts = { int, char }:

false



54 / 56

Fold Expressions
A little bit better

$ g++ array.cc -std=c++17
In file included from array.h:33:0,

from array.cc:1:
array.tcc: In instantiation of ‘void Array<T, N>::set(Ts ...)
[with Ts = {int, int, const char*}; T = int; long unsigned int N = 3]':
array.cc:10:23: required from here
array.tcc:14:5: error: static assertion failed: All types must be the same.

static_assert((std::is_same_v<T, Ts> && ...),



55 / 56

Fold Expressions
Closing Notes

• Fold expressions are very useful when doing generic
programming

• we can perform operations over entire ranges of
arguments at once

• together with <type_traits> we can do error
checking in an easy way



56 / 56

Fold Expressions
What will be printed? Why?

1 template <typename... Ts>
2 auto foo(Ts... data)
3 {
4 return ((data * data) + ...);
5 }
6
7 int main()
8 {
9 cout << foo(3, 4) << endl;

10 }



www.liu.se

www.liu.se

	Class Templates
	Variadic Templates
	Template Usage & Error checking
	Type Traits Intro
	Fold Expressions

