TDDD38/726G82:
Adv. Programming in C++

Templates Il
Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY



Class Templates

Variadic Templates

Template Usage & Error checking
Type Traits Intro

Fold Expressions



Variadic Templates

Template Usage & Error checking
Type Traits Intro

Fold Expressions

ua b wON R

LINKOPING
I I." UNIVERSITY



Class Templates

Basic Class Templates

#include <cstddef> // size_ t

template <typename T, size_t N>
class Array

{
public:
static size_t size()

return N;

}
T& operator[](size_t 1)
return data[i];
private:

T data[N]{};

’

3/56

II LINKOPING
@ UNIVERSITY



Class Templates

Basic Class Templates

® class templates are not classes;

® they are templates for generating classes during
instantiation;

® member functions are not necessarily function

templates; they are only generated whenever the class
template is instantiated.

4/56

LINKOPING
II.“ UNIVERSITY



5/56

Class Templates

Member Functions

array.h

#include <cstddef> // size_ t

template <typename T, size_t N>
class Array

{
public:
static size_t size();
T& operator[](size_t i);
private:
T data[N]{};

r

#include "array.tcc"

II LINKOPING
@ UNIVERSITY



5/56

Class Templates

Member Functions

array.h
. g array.tcc
#include <cstddef> // size_ t
template <typename T, size_t N>
template <typename T, size_t N> size_t Array<T, N>::size()
class Array
{ return N;
public:
static size_t size();
T& operator[](size_t i); template <typename T, size_t N>
private: T& Array<T, N>::operator[](size_t i)
T data[N]{};
e return data[i];
}
#include "array.tcc"

II LINKOPING
@ UNIVERSITY



Class Templates

Member Functions

® |t can be useful to separate the class template
definition and the member function definitions;

® just as with function templates, the compiler must
know everything about a class template before it is
able to instantiate the class;

® because of this we should include the member function
definition file in the header file.

6/56

LINKOPING
II.“ UNIVERSITY



7/56

Class Templates

Member Functions

® Member functions depend on the class template
arguments;

® since the class templates depends on the parameters,
we must include them in the qualified name.

® therefore we must use templates to specify these
instantiation arguments (even though the member
function itself is not a template).

LINKOPING
II.“ UNIVERSITY



8/56

Class Templates

Instantiation

#include "array.h"

int main()
{
Array<int, 3> arr;
for (size_t i{0}; i < arr.size(); ++i)
{
arr[i] = 1i;
3
}

LINKOPING
II.“ UNIVERSITY



Class Templates

Instantiation

® |nstantiating a class template will generate a distinct
class for each set of unique template parameters;

® since the template parameters are bound to the type
we can then proceed to use the member functions as
normal, no need to supply the template parameters.

9/56

LINKOPING
II.“ UNIVERSITY



Class Templates

Member Function Templates

array.h

#include <cstddef> // size t

template <typename T, size_t N>
class Array

public:
7Y soo
template <size_ t M>
Array<T, N+M> concat(Array<T, M> const& other);
7 ooa
}i

#include "array.tcc"

10/56

II LINKOPING
@ UNIVERSITY



Class Templates

Member Function Templates

array.tcc

/7 ...
template <typename T, size_t N>
template <size_t M>
Array<T, N+M> Array<T, N>::concat(Array<T, M> const& other)
{
Array<T, N+M> result;
for (size_t i{0}; i < N; ++i)

result[i] = data[i];
for (size_t i{0}; i < M; ++i)
result[N + i] = other[i];

return result;

10/56

II LINKOPING
@ UNIVERSITY



11/56

Class Templates

Member Function Templates

® Member functions can themselves be templates (see
concat()).

® |n that case we are generating one member function for
each unique set of template parameters.

® This means that a member function template depends on
two sets of template parameters: one set for the class
template and the template parameters for the function.

® Both of these parameter sets must be specified separately
when defining the member function template.

II LINKOPING
@ UNIVERSITY



Class Templates

Specialization

template<>
class Array<int, 0>
{
public:

static size_t size()

{

return 0;

}

int& operator[](size_t 1)

{

throw std::out_of_range{"No elements"};

}
iy

12/56

LINKOPING
II.“ UNIVERSITY



13/56

Class Templates

Specialization

® Just like with template functions (you will be hearing
this alot), you can specialize your class templates for
specific template parameters;

® this is used a lot more than explicit function template
specialization, since there is no way to overload classes;

® whenever a class template is instantiated the compiler
will look for specializations;

® Warning: the specialization should have been declared
before the instantiation.

LINKOPING
II.“ UNIVERSITY



Class Templates

Partial Specialization

template<typename T>
class Array<T, 0>
{
public:
static size_t size()
{
return 0;
}
T& operator[](size_t 1)
{
throw std::out_of_range{"No elements"};
}
+

14/56

LINKOPING
II.“ UNIVERSITY



Class Templates

Partial Specialization

® One thing that class templates can do which function
templates are unable to do, is partial specialization;

® this allows you to only specialize a subset of the
template parameters;

® it can also be used to narrow the possibilites of a
template parameter (this will come later).

15/56

LINKOPING
II.“ UNIVERSITY



16/56

Class Templates

Partial Specialization Restrictions

® Cannot be identical to the primary templates
parameter list;

® Must be more specialized than the primary template;
® No default arguments are allowed;

® Each nontype argument must be deducible by the
compiler;

® Nontype parameters cannot be specialized if other
template parameters depend on them.

LINKOPING
II.“ UNIVERSITY



Class Templates

What will be printed? Why?

17/56

UNIVERSITY

template <typename T, int N>
struct Cls
{ static int const id{1}; };
template <typename T>
struct Cls<T, 0>
{ static int const id{2}; };
template <int N>
struct Cls<int, N>
{ static int const id{3}; };
int main()
cout << Cls<double, 1>::id << ' '
<< Cls<int , 1>iidd << '
<< Cls<double, 0>::id << ' '
<< Cls<int , 0>::id << endl;
}
LINKOPING



Class Templates

Template Usage & Error checking
Type Traits Intro
Fold Expressions

ua b wON R

LINKOPING
I I." UNIVERSITY



19/56

Variadic Templates

Initialization of Array

#include "array.h"

int main()
{

Array<int, 3> arr{1,2,3};
}

LINKOPING
II.“ UNIVERSITY



20/56

Variadic Templates

Variadic Templates

array.h

#include <cstddef> // size t

template <typename T, size_t N>
class Array

public:
Array() = default;
template <typename... Ts>
Array(Ts... list)

: data{list...}
{1
I oo
Y

#include "array.tcc"

II LINKOPING
@ UNIVERSITY



Variadic Templates

Parameter Pack

e typename...

e Ts... list
e list...

Ts

21/56

LINKOPING
II.“ UNIVERSITY



Variadic Templates

Parameter Pack

e typename... Ts
® Template parameter pack;
® atemplate parameter which takes zero or more
arguments.
e Ts... list
e list...

21/56

LINKOPING
II.“ UNIVERSITY



Variadic Templates

Parameter Pack

e typename... Ts
e Ts... list
® Function parameter pack;
® Function parameter that takes zero or more
arguments.
e list...

21/56

LINKOPING
II.“ UNIVERSITY



Variadic Templates

Parameter Pack

e typename... Ts
e Ts... list
e list...

® Parameter pack expansion;

® Expand to a comma-separated list of zero or more
values;

® the type of these values will correspond to the
typesinTs. ..

® only works inside lists;

® Can generate a comma separated list where the
comma is a list delimeter.

21/56

LINKOPING
II.“ UNIVERSITY



22/56

Variadic Templates

Parameter Pack

template <typename T, size_t N>
template <typename... Ts>
Array<T, N>::Array(Ts... list)
: data{list...}

{13

int main()

Array<int, 3> arr{1,2,3};

II LINKOPING
@ UNIVERSITY



22/56

Variadic Templates

Parameter Pack

template <typename... Ts>
Array<int, 3>::Array(Ts... list)
: data{list...}

{13

int main()

Array<int, 3> arr{1,2,3};

II LINKOPING
@ UNIVERSITY



22/56

Variadic Templates

Parameter Pack

template <typename T1, typename T2, typename T3>
Array<int, 3>::Array(Ts... list)

: data{list...}

{13

int main()

Array<int, 3> arr{1,2,3};

II LINKOPING
@ UNIVERSITY



22/56

Variadic Templates

Parameter Pack

template <typename T1, typename T2, typename T3>
Array<int, 3>::Array(T1 11, T2 12, T3 13)

: data{list...}

{13

int main()

Array<int, 3> arr{1,2,3};

II LINKOPING
@ UNIVERSITY



22/56

Variadic Templates

Parameter Pack

template <typename T1, typename T2, typename T3>
Array<int, 3>::Array(T1 11, T2 12, T3 13)

: data{l1, 12, 13}

{13

int main()

Array<int, 3> arr{1,2,3};

II LINKOPING
@ UNIVERSITY



Variadic Templates

Parameter Pack

Array<int, 3>::Array(int 11, int 12, int 13)
: data{l1, 12, 13}
{13

int main()

Array<int, 3> arr{1,2,3};

22/56

LINKOPING
UNIVERSITY



Variadic Templates

Parameter Pack

Array<int, 3>::Array(int 11, char const* 12, int 13)
: data{l1, 12, 13}
{13

int main()

Array<int, 3> arr{1,"2",3};

22/56

LINKOPING
UNIVERSITY



Variadic Templates

Parameter Pack

Array<int, 3>::Array(intl1, /Char_caonst* 12, int 13)
: data{l1, 12, 13}
{13

int main()

Array<int, 3> arr{1,"2",3};

22/56

LINKOPING
UNIVERSITY



Variadic Templates

Parameter Pack

Array<int, 3>::Array(int 11, int 12, int 13, int 14)
1 data{l1, 12, 13, 14}
{13

int main()

Array<int, 3> arr{1,2,3,4};

22/56

LINKOPING
UNIVERSITY



Variadic Templates

Parameter Pack

Array<int, 3>::Array(int/l1, int,12,, int 13, int 14)
1 data{l1, 12, 13, 14}
{13

int main()

Array<int, 3> arr{1,2,3,4};

22/56

LINKOPING
UNIVERSITY



Class Templates
Variadic Templates

Type Traits Intro
Fold Expressions

u b WN K-

LINKOPING
I I.“ UNIVERSITY



Template Usage & Error checking

Variadic Recursion

array.h

#include <cstddef> // size_ t

template <typename T, size_t N>
class Array

{
public:
47 waa
template <typename... Ts>
void set(Ts... list);
/Y caa
3

#include "array.tcc"

24/56

II LINKOPING
@ UNIVERSITY



Template Usage & Error checking

Variadic Recursion

array.h

#include <cstddef> // size_ t

template <typename T, size_t N>
class Array

{
public:
47 waa
template <typename... Ts>
void set(Ts... list);
/Y caa
3

#include "array.tcc"

array.tcc

24/56

M oo

template <typename T, size_t N>
template <typename... Ts>

void Array<T, N>::set(Ts... list)

// ?2?

3
V7

II LINKOPING
@ UNIVERSITY



25/56

Template Usage & Error checking

Variadic Recursion

® There is a way to unpack the parameter pack;

LINKOPING
II.“ UNIVERSITY



25/56

Template Usage & Error checking

Variadic Recursion

® There is a way to unpack the parameter pack;

® with recursion!

LINKOPING
II.“ UNIVERSITY



Template Usage & Error checking

Variadic Recursion

template <typename... Ts>
void fun(Ts... list)

fun_helper(list...);
// this is used for recursing through the parameter pack
template <typename T, typename... Ts>
void fun_helper(T first, Ts... rest)

// do thing with first here

// drop the first element and continue

fun_helper(rest...);

// base case
void fun_helper()
{3

26/56

II LINKOPING
@ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2", 3.4);

LINKOPING
II.“ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2", 3.4); Ts = {int, char const*, double}

LINKOPING
II.“ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(a, "2", 3.4); Ts = {int, char const*, double}

LINKOPING
II.“ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2", 3.4); Ts = {int, char const*, double}
fun_helper(1, "2", 3.4); First = int, Rest = {char const*, double}

II LINKOPING
@ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2", 3.4); Ts = {1nt, char const* double}
1‘un,helper(’1r "2", 3.4); Flrst = int, Rest = {char const*, double}

II LINKOPING
@ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2", 3.4); Ts = {int, char const*, double}
fun_helper(1, "2", 3.4); First = int, Rest = {char const*, double}
fun_helper("2", 3.4); First = char const*, Rest = {double}

II LINKOPING
@ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2", 3.4); Ts = {int, char const*, double}
fun_helper(1, "2", 3.4); First = int, Rest = {char const*, double}
; First = char const*, Rest = {double}

fun_helper("2" %é),

II LINKOPING
@ UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2",
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);
fun_helper(3.4);

3.4);

Ts = {int, char const*, double}

First = int, Rest = {char const*, double}
First = char const*, Rest = {double}
First = double, Rest = {}

LINKOPING
UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2",
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);

fun,helper(gTi);

3.4);

Ts = {int, char const*, double}

First = int, Rest = {char const*, double}
First = char const*, Rest = {double}
First = double, Rest = {}

LINKOPING
UNIVERSITY



27/56

Template Usage & Error checking

Variadic Recursion

fun(1, "2",
fun_helper(1, "2", 3.4);
fun_helper("2", 3.4);
fun_helper(3.4);
fun_helper();

3.4);

Ts = {int, char const*, double}

First = int, Rest = {char const*, double}
First = char const*, Rest = {double}
First = double, Rest = {}

LINKOPING
UNIVERSITY



28/56

Template Usage & Error checking

Variadic Recursion

Let’s use this technique!

II LINKOPING
@ UNIVERSITY



29/56

Template Usage & Error checking
Variadic Recursion

array.h

#include <cstddef> // size t

template <typename T, size_t N>
class Array

public:
7 ooa
template <typename... Ts>
void set(Ts... list);
I oao
private:
void set_helper(size_t i);
template <typename First, typename... Rest>
void set_helper(size_t i, First first, Rest... rest);
// ...
}

#include "array.tcc"

II LINKOPING
@ UNIVERSITY



30/56

Template Usage & Error checking
Variadic Recursion

array.tcc

template <typename T, size_t N>
template <typename... Ts>
void Array<T, N>::set(Ts... list)

set_helper (0, list...);

template <typename T, size_t N>
void Array<T, N>::set_helper(size_t)

{13

template <typename T, size_t N>

template <typename First, typename... Rest>

void Array<T, N>::set_helper(size_t i, First first, Rest... rest)

data[i] = first;
set_helper(i+1, rest...);

}

II LINKOPING
@ UNIVERSITY



31/56

Template Usage & Error checking

Variadic Recursion

int main()

{
Array<int, 3> arr;
arr.set(1,2,3);

}

LINKOPING
II.“ UNIVERSITY



31/56

Template Usage & Error checking

Variadic Recursion

int main()

{
Array<int, 3> arr;
arr.set(1,2,3);

}

LINKOPING
II.“ UNIVERSITY



31/56

Template Usage & Error checking

Variadic Recursion

int main()
{
Array<int, 3> arr;
arr.set(1,2,3,4);
}

LINKOPING
II.“ UNIVERSITY



31/56

Template Usage & Error checking

Variadic Recursion

int main()
{
Array<int, 3> arr;
arr.set(1,2,3,4);
}

LINKOPING
II.“ UNIVERSITY



31/56

Template Usage & Error checking

Variadic Recursion

int main()
{
Array<int, 3> arr;
arr.set(1,2,3,4);
}

LINKOPING
II.“ UNIVERSITY



32/56

Template Usage & Error checking

Not an error?

® The compiler doesn’t perform range checking

LINKOPING
II.“ UNIVERSITY



32/56

Template Usage & Error checking

Not an error?

® The compiler doesn’t perform range checking

® So we have to implement it ourselves

LINKOPING
II.“ UNIVERSITY



32/56

Template Usage & Error checking

Not an error?

® The compiler doesn’t perform range checking
® So we have to implement it ourselves

® ...But how do we check the number of arguments?

LINKOPING
II.“ UNIVERSITY



Template Usage & Error checking

sizeof...

e sjzeof. .. takes a parameter pack;

® return how many elements there are in the give
parameter pack;

® will be evaluated during compilation.

33/56

LINKOPING
II.“ UNIVERSITY



34/56

Template Usage & Error checking

sizeof...
template <typename... Ts>
size_ t parameter_count(Ts... list)
{

return sizeof...(list);

}

LINKOPING
II.“ UNIVERSITY



35/56

Template Usage & Error checking

But how does this help us?

That’s nice and all, but how do we report the error?

LINKOPING
II.“ UNIVERSITY



36/56

Template Usage & Error checking

static_assert

e static_assert takes two parameters;

a bool which is evaluated during compilation;

® a message which is displayed during compilation if the
bool is false;

e static_asserts that fail will halt the compilation.

LINKOPING
II.“ UNIVERSITY



Template Usage & Error checking

static_assert

template <int N>
void check()

{
}

static_assert(N > 0, "N must be positive");

int main()

{
check<2>(); // no error
check<-2>(); // error!

}

37/56

LINKOPING
II.“ UNIVERSITY



Template Usage & Error checking

static_assert

$ g++ static_assert.cc

static_assert.cc: In instantiation of ‘void check() [with int N = -2]':
static_assert.cc:10:13: required from here

static_assert.cc:4:3: error: static assertion failed: N must be positive

38/56

LINKOPING
UNIVERSITY



39/56

Template Usage & Error checking

Putting it all together!

array.tcc

template <typename T, size_t N>
template <typename... Ts>
void Array<T, N>::set(Ts... list)
{
static_assert(sizeof...(list) <= N,
"Too many elements");
set_helper(0, list...);

}

LINKOPING
II.“ UNIVERSITY



40/56

Template Usage & Error checking

That’s all folks!

II LINKOPING
@ UNIVERSITY



40/56

Template Usage & Error checking

LINKOPING
II.“ UNIVERSITY



41/56

Template Usage & Error checking

What happens if we do this?

#include "array.h"
int main()

Array<int, 3> arr;
arr.set(1,"2",3);

II LINKOPING
@ UNIVERSITY



42/56

Template Usage & Error checking

Errors!

$ g++ array.cc -std=c++17

In file included from array.h:
from array.cc:1:

array.tcc: In instantiation of ‘void Array<T, N>::set_helper(size_t, First, Rest ...)

[with First = const char*; Rest = {}; T = int; long unsigned int N = 3; size_t = long unsigned int]':

array.tcc:24:15:  recursively required from ‘void Array<T, N>::set_helper(size_t, First, Rest

[with First = int; Rest = {const char*}; T = int; long unsigned int N = 3; size_t = long unsigned int]'

array.tcc:24:15:  required from ‘void Array<T, N>::set_helper(size_t, First, Rest ...)
[with First = int; Rest = {int, const char*}; T = int; long unsigned int N = 3; size_t = long unsigned int]'
array.tcc:16:15:  required from ‘void Array<T, N>::set(Ts ...)

[with Ts = {int, int, const char*}; T = int; long unsigned int N = 3]"

array.c required from here

array.tcc:23:13: error: invalid conversion from ‘const char*' to ‘int' [-fpermissive]
data[i] = head;

LINKOPING
@ UNIVERSITY




1 Class Templates

2 Variadic Templates

3 Template Usage & Error checking
4

5

Fold Expressions

LINKOPING
I I." UNIVERSITY



44/56

Type Traits Intro

How do we produce nicer errors?

® The <type_traits> header might be helpful

LINKOPING
II.“ UNIVERSITY


https://en.cppreference.com/w/cpp/header/type_traits

44/56

Type Traits Intro

How do we produce nicer errors?

® The <type_traits> header might be helpful

e <type_traits>isused to check various properties
about types during compilation

LINKOPING
II.“ UNIVERSITY


https://en.cppreference.com/w/cpp/header/type_traits

Type Traits Intro

How do we produce nicer errors?

® The <type_traits> header might be helpful

e <type_traits>isused to check various properties
about types during compilation

® ook at cppreference for a complete list

44/56

LINKOPING
II.“ UNIVERSITY


https://en.cppreference.com/w/cpp/header/type_traits

44/56

Type Traits Intro

How do we produce nicer errors?

The <type_traits> header might be helpful

<type_traits>isused to check various properties
about types during compilation

Look at cppreference for a complete list

We will look at std: :1s_same

LINKOPING
II.“ UNIVERSITY


https://en.cppreference.com/w/cpp/header/type_traits

45/56

Type Traits Intro

Simplified implementation of std: :is_same

template <typename T, typename U>
struct is_same

{
static bool const value{false};

iy

template <typename T>
struct is_same<T, T>

{
static bool const value{true};

iy

LINKOPING
II.“ UNIVERSITY



46/56

Type Traits Intro

Using std: :is_same

#include <type_traits>
int main()

{
// true

bool a{std::is_same<int, int>::value};
// false

bool b{std::is_same<int, double>::value};

LINKOPING
II.“ UNIVERSITY



47/56

Type Traits Intro

Type Traits

<type_traits> wasintroduced in C++11
® got some nice extensions in C++14

® is_same_v<T, U> instead of
is_same<T,U>::value

We will talk more about <type_traits> later

LINKOPING
II.“ UNIVERSITY



Class Templates

Variadic Templates

Template Usage & Error checking
Type Traits Intro

ua b wON R

LINKOPING
I I." UNIVERSITY



Fold Expressions

Fold expressions

® |n C++17 fold expressions were introduced
® A way to operate on all values in a parameter pack

® Simplifies code significantly, since we do not have to
always rely on recursive function templates

49/56

LINKOPING
II.“ UNIVERSITY



Fold Expressions

Fold expression syntax

template <typename...

{
(f(args) + ...);
(... - f(args));
(f(args) + ... + 5);
(6 * ... * f(args));

1

void foo(Args... args)

Args>

//
//
//
//

unary right fold
unary left fold
binary right fold
binary left fold

50/56

LINKOPING
II.“ UNIVERSITY



51/56

Fold Expressions

Fold expression

Forargs = {1,2,3,4}

(args + ...) ==
(... - args) ==

(args + ... + 5) ==
(06 * ... * args) ==

LINKOPING
II.“ UNIVERSITY



51/56

Fold Expressions

Fold expression

Forargs = {1,2,3,4}:

(args + ...) == 1+ (2 + (3 + 4))
(... - args) ==

(args + ... + 5) ==

(0 * ... * args) ==

LINKOPING
II.“ UNIVERSITY



51/56

Fold Expressions

Fold expression

Forargs = {1,2,3,4}:

(args + ...) == 1+ (2 + (3 + 4))
(... -args) == ((1 - 2) - 3) - 4
(args + ... + 5) ==

(0 * ... * args) ==

LINKOPING
II.“ UNIVERSITY



51/56

Fold Expressions

Fold expression

Forargs = {1,2,3,4}

(args + ...) == 1+ (2 + (3 + 4))

(... - args) == ((1 - 2) - 3) - 4
(args + ... +5) == 1+ (2 + (3 + (4+5)))
(6 * ... * args) ==

LINKOPING
II.“ UNIVERSITY



51/56

Fold Expressions

Fold expression

Forargs = {1,2,3,4}

(args + ...) == 1+ (2 + (3 + 4))

(... - args) == ((1 - 2) - 3) - 4
(args + ... +5) == 1+ (2 + (3 + (4+5)))
(0 * ... *args) == (((0 * 1) * 2) * 3) * 4

II LINKOPING
@ UNIVERSITY



52/56

Fold Expressions

Applying fold expressions

template <typename T, size_t N>

template <typename... Ts>
void Array<T, N>::set(Ts... list)
{
//
static_assert((std::is_same_v<T, Ts> && ...),

"Elements must be of same type");
set_helper(0, list...);

}

LINKOPING
II.“ UNIVERSITY



53/56

Fold Expressions

Fold expression expansion

ForT = intandTs = { int, char }:

std::is_same_v<T, Ts> && ...

II LINKOPING
@ UNIVERSITY



53/56

Fold Expressions

Fold expression expansion

ForT = intandTs = { int, char }:

std::is_same_v<int, Ts> &&

II LINKOPING
@ UNIVERSITY



53/56

Fold Expressions

Fold expression expansion

ForT = intandTs = { int, char }:

std::is_same_v<int, int> && std::is_same_v<int, char>

II LINKOPING
@ UNIVERSITY



Fold Expressions

Fold expression expansion

ForT = intandTs = { int, char }:

std::is_same_v<int, int> && false

53/56

II LINKOPING
@ UNIVERSITY



53/56

Fold Expressions

Fold expression expansion

ForT = intandTs = { int, char }:

true && false

II LINKOPING
@ UNIVERSITY



53/56

Fold Expressions

Fold expression expansion

ForT = intandTs = { int, char }:

false

II LINKOPING
@ UNIVERSITY



54/56

Fold Expressions

A little bit better

$ g++ array.cc -std=c++17
In file included from array.h:33:0,
from array.cc:1:
array.tcc: In instantiation of ‘void Array<T, N>::set(Ts ...)
[with Ts = {int, int, const char*}; T = int; long unsigned int N = 3]':
array.cc:10:23: required from here
array.tcc:14:5: error: static assertion failed: All types must be the same.
static_assert((std::is_same_v<T, Ts> && ...),
LINKOPING

UNIVERSITY



55/56

Fold Expressions

Closing Notes

® Fold expressions are very useful when doing generic
programming

® we can perform operations over entire ranges of
arguments at once

® together with <type_traits>we candoerror
checking in an easy way

LINKOPING
II.“ UNIVERSITY



56/56

Fold Expressions

What will be printed? Why?

template <typename... Ts>
auto foo(Ts... data)
{
return ((data * data) + ...);
}

int main()

{
)

cout << foo(3, 4) << endl;

LINKOPING
II.“ UNIVERSITY



II LINKOPING
o UNIVERSITY


www.liu.se

	Class Templates
	Variadic Templates
	Template Usage & Error checking
	Type Traits Intro
	Fold Expressions

