
TDDD38/726G82:
Adv. Programming in C++
Templates I

Christoffer Holm

Department of Computer and information science



1 References
2 Function Templates
3 Nontype Template Parameters
4 Compilation and Linking



1 References
2 Function Templates
3 Nontype Template Parameters
4 Compilation and Linking



3 / 46

References
What are references?

1 void fun(int x)
2 {
3 x += 1;
4 }
5
6 int main()
7 {
8 int y { 5 };
9 fun(y);

10 cout << y << endl; // 5
11 }



3 / 46

References
What are references?

1 void fun(int* x)
2 {
3 *x += 1;
4 }
5
6 int main()
7 {
8 int y { 5 };
9 fun(&y);

10 cout << y << endl; // 6
11 }



3 / 46

References
What are references?

1 void fun(int x)
2 {
3 x += 1;
4 }
5
6 int main()
7 {
8 int y { 5 };
9 fun(y);

10 cout << y << endl; // 5
11 }



3 / 46

References
What are references?

1 void fun(int& x)
2 {
3 x += 1;
4 }
5
6 int main()
7 {
8 int y { 5 };
9 fun(y);

10 cout << y << endl; // 6
11 }



4 / 46

References
What are references?

• By default, parameters in C++ are passed by‐value
which means the value is copied into the function

• If you want functions to have direct access to a variable
from the call site you have to pass said variable
indirectly

• This means that you have to pass a pointer or a
reference



4 / 46

References
What are references?

• A reference and a pointer are very similar
• But there are two major differences:
• A pointer can be null, while a reference cannot
• A pointer can change what it points to, a reference

cannot



4 / 46

References
What are references?

• Pointers must be able to work with and modify both
the value it points to and the address it stores.

• Because of this pointers works with the dereference
operator (*) to access values and the addressof
operator (&) to access the address of a variable



4 / 46

References
What are references?

• But references cannot change once they have been
created, nor can they be empty

• Because of this we are only ever able to work with the
referenced value, never the address/reference

• This allows for simplified syntax when working with
references compared with pointers.



1 References
2 Function Templates
3 Nontype Template Parameters
4 Compilation and Linking



6 / 46

Function Templates

1 int sum(int (&array)[3])
2 {
3 int result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 string sum(string (&array)[3])
2 {
3 string result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 double sum(double (&array)[3])
2 {
3 double result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 int main()
2 {
3 int arr1[3] { 5, 5, 5 };
4 double arr2[3] { 1.05, 1.05, 1.04 };
5 string arr3[3] { "h", "i", "!" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 cout << sum(arr3) << endl;
9 }



6 / 46

Function Templates

1 int sum(int (&array)[3])
2 {
3 int result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 string sum(string (&array)[3])
2 {
3 string result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 double sum(double (&array)[3])
2 {
3 double result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 int main()
2 {
3 int arr1[3] { 5, 5, 5 };
4 double arr2[3] { 1.05, 1.05, 1.04 };
5 string arr3[3] { "h", "i", "!" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 cout << sum(arr3) << endl;
9 }



6 / 46

Function Templates

1 int sum(int (&array)[3])
2 {
3 int result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 string sum(string (&array)[3])
2 {
3 string result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 double sum(double (&array)[3])
2 {
3 double result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 int main()
2 {
3 int arr1[3] { 5, 5, 5 };
4 double arr2[3] { 1.05, 1.05, 1.04 };
5 string arr3[3] { "h", "i", "!" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 cout << sum(arr3) << endl;
9 }



6 / 46

Function Templates

1 int sum(int (&array)[3])
2 {
3 int result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 string sum(string (&array)[3])
2 {
3 string result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 double sum(double (&array)[3])
2 {
3 double result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i];
7 }
8 return result;
9 }

1 int main()
2 {
3 int arr1[3] { 5, 5, 5 };
4 double arr2[3] { 1.05, 1.05, 1.04 };
5 string arr3[3] { "h", "i", "!" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 cout << sum(arr3) << endl;
9 }



7 / 46

Function Templates
Templates

• Quite often we have functions that take specific type
but where the code would be exactly the same for
other types as well.

• Based on the knowledge we have so far this means we
need a lot of different overloads which are identical
(except for the types)

• This has several disadvantages: if the behaviour need
to change then we have to modify each overload, its
not always clear to the user if there are any subtle
differences between the versions etc.



7 / 46

Function Templates
Templates

• But the advantage is that we now have a function
which seemingly works for many different types.

• In reality they of course are different overloads, but
since the implementations are the same (except for the
types)

• If we could make the compiler generate these different
overloads, then most of the disadvantages disappear
but we keep the advantage.

• This is where templates come in!



8 / 46

Function Templates
Templates

1 template <typename T>
2 T sum(T (&array)[3])
3 {
4 T result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i];
8 }
9 return result;
10 }

1 int main()
2 {
3 int arr1[3] { 5, 5, 5 };
4 double arr2[3] { 1.05, 1.05, 1.04 };
5 string arr3[3] { "h", "i", "!" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 cout << sum(arr3) << endl;
9 }



8 / 46

Function Templates
Templates

1 template <typename T>
2 T sum(T (&array)[3])
3 {
4 T result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i];
8 }
9 return result;
10 }

1 int main()
2 {
3 int arr1[3] { 5, 5, 5 };
4 double arr2[3] { 1.05, 1.05, 1.04 };
5 string arr3[3] { "h", "i", "!" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 cout << sum(arr3) << endl;
9 }



9 / 46

Function Templates
Templates

• Templates generalizes functions by parametrizing data
types (i.e. making them configurable).

• The parametrized data types are filled in during
compilation, usually by the compiler (implcitly) or by
the code author (explicitly).

• The compiler will generate a function for each unique
data type that is used.



10 / 46

Function Templates
Templates

• Template‐parameters are not dynamic types;
• they are just placeholders inside a template;
• the user will pass in types into the function template;
• when this occurs, a function is generated;
• this is called template instantiation.



11 / 46

Function Templates
Template Instantiation

1 template <typename T>
2 T sum(T (&array)[3])
3 {
4 T result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i];
8 }
9 return result;
10 }

1 int main()
2 {
3 int arr1[3] { 1, 2, 3 };
4 double arr2[3] { 4.5, 6.7, 8.9 };
5 // explicitly instantiate sum
6 cout << sum<int>(arr1) << endl;
7 // let the compiler instantiate sum
8 cout << sum(arr2) << endl;
9 }



12 / 46

Function Templates
Default Parameters

1 template <typename T = int>
2 T identity(T x = {})
3 {
4 return x;
5 }

1 int main()
2 {
3 cout << identity() << endl;
4 cout << identity<double>(3.0) << endl;
5 cout << identity<string>() << endl;
6 }



13 / 46

Function Templates
Template Argument Deduction

• To instantiate a function template every template
argument must be known;

• however: the user does not have to specify all
template arguments;

• whenever possible the compiler will deduce the
arguments that the user left out;

• this is called template argument deduction.



14 / 46

Function Templates
Template Argument Deduction

1 template <typename T>
2 T sum(T (&array)[3]);
3
4 int main()
5 {
6 int arr1[3] { 1, 2, 3 };
7 cout << sum(arr1) << endl;
8 }



14 / 46

Function Templates
Template Argument Deduction

1 template <typename T>
2 T sum(T (&array)[3]);
3
4 int main()
5 {
6 int arr1[3] { 1, 2, 3 };
7 cout << sum(arr1) << endl;
8 }



14 / 46

Function Templates
Template Argument Deduction

1 template <typename T>
2 T sum(T (&array)[3]);
3
4 int main()
5 {
6 int arr1[3] { 1, 2, 3 };
7 cout << sum(arr1) << endl;
8 }



14 / 46

Function Templates
Template Argument Deduction

1 template <typename T>
2 T sum(T (&array)[3]);
3
4 int main()
5 {
6 int arr1[3] { 1, 2, 3 };
7 cout << sum(arr1) << endl;
8 }



14 / 46

Function Templates
Template Argument Deduction

1 template <typename T>
2 T sum(T (&array)[3]);
3
4 int main()
5 {
6 int arr1[3] { 1, 2, 3 };
7 cout << sum(arr1) << endl;
8 }



14 / 46

Function Templates
Template Argument Deduction

1 template <typename T>
2 T sum(T (&array)[3]);
3
4 int main()
5 {
6 int arr1[3] { 1, 2, 3 };
7 cout << sum<int>(arr1) << endl;
8 }



15 / 46

Function Templates
Template Argument Deduction

1 template <typename T1, typename T2>
2 void print(T1 a, T2 b)
3 {
4 cout << a << ' ' << b << endl;
5 }

1 using namespace std::literals;
2 int main()
3 {
4 print("val = ", 5);
5 }



15 / 46

Function Templates
Template Argument Deduction

1 template <typename T1, typename T2>
2 void print(T1 a, T2 b)
3 {
4 cout << a << ' ' << b << endl;
5 }

1 using namespace std::literals;
2 int main()
3 {
4 print<char const*, int>("val = ", 5);
5 }



15 / 46

Function Templates
Template Argument Deduction

1 template <typename T1, typename T2>
2 void print(T1 a, T2 b)
3 {
4 cout << a << ' ' << b << endl;
5 }

1 using namespace std::literals;
2 int main()
3 {
4 print("val = "s, 5);
5 }



15 / 46

Function Templates
Template Argument Deduction

1 template <typename T1, typename T2>
2 void print(T1 a, T2 b)
3 {
4 cout << a << ' ' << b << endl;
5 }

1 using namespace std::literals;
2 int main()
3 {
4 print<string, int>("val = "s, 5);
5 }



16 / 46

Function Templates
Side‐note

• "val = " is a C‐string literal i.e. has type
char const*;

• We want it to be std::string, so how can we do
that?

• Either we can construct a temporary string:
std::string{"val = "};

• or we can import std::literals so we get access
to “real” string‐literals: "val = "s;

• notice the s at the end of the literal: that indicates it is
of type std::string.



17 / 46

Function Templates
Return Types

1 template <typename Ret, typename T1, typename T2>
2 Ret max(T1 const& a, T2 const& b)
3 {
4 if (a > b)
5 return a;
6 return b;
7 }



18 / 46

Function Templates
Return Types

1 template <typename Ret, typename T1, typename T2>
2 Ret max(T1 const&, T2 const&);
3 int main()
4 {
5 // ill-formed, cannot deduce 'Ret'
6 cout << max(5, 6.0)
7 << endl;
8 }



18 / 46

Function Templates
Return Types

1 template <typename Ret, typename T1, typename T2>
2 Ret max(T1 const&, T2 const&);
3 int main()
4 {
5 // works, but tedious
6 cout << max<double, int, double>(5, 6.0)
7 << endl;
8 }



18 / 46

Function Templates
Return Types

1 template <typename Ret, typename T1, typename T2>
2 Ret max(T1 const&, T2 const&);
3 int main()
4 {
5 // works and is nice!
6 cout << max<double>(5, 6.0)
7 << endl;
8 }



19 / 46

Function Templates
Return Types

• The user have to specify Ret since the compiler is
unable to deduce the return type;

• however the compiler will deduce T1 and T2 from the
arguments passed to the function.



20 / 46

Function Templates
Going back to our example

1 template <typename T>
2 T sum(T (&array)[3])
3 {
4 T result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i];
8 }
9 return result;
10 }



20 / 46

Function Templates
Going back to our example

1 template <typename T>
2 T sum(T (&array)[3])
3 {
4 T result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i];
8 }
9 return result;
10 }

1 string sum(string (&array)[3])
2 {
3 string result{};
4 for (int i{0}; i < 3; ++i)
5 {
6 result += array[i] + " ";
7 }
8 return result;
9 }



21 / 46

Function Templates
Overload Resolution

1 int main()
2 {
3 int arr1[3] { 1, 2, 3 };
4 string arr2[3] { "templates",
5 "are", "fun" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 }

1 // Candidates
2
3 template <typename T> T sum(T (&)[3]);
4
5 string sum(string (&)[3]);



21 / 46

Function Templates
Overload Resolution

1 int main()
2 {
3 int arr1[3] { 1, 2, 3 };
4 string arr2[3] { "templates",
5 "are", "fun" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 }

1 // Candidates
2
3 template <typename T> T sum(T (&)[3]);
4
5 string sum(string (&)[3]);



21 / 46

Function Templates
Overload Resolution

1 int main()
2 {
3 int arr1[3] { 1, 2, 3 };
4 string arr2[3] { "templates",
5 "are", "fun" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 }

1 // Candidates
2
3 template <typename T> T sum(T (&)[3]);
4
5 string sum(string (&)[3]);



21 / 46

Function Templates
Overload Resolution

1 int main()
2 {
3 int arr1[3] { 1, 2, 3 };
4 string arr2[3] { "templates",
5 "are", "fun" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 }

1 // Candidates
2
3 template <typename T> T sum(T (&)[3]);
4
5 string sum(string (&)[3]);



21 / 46

Function Templates
Overload Resolution

1 int main()
2 {
3 int arr1[3] { 1, 2, 3 };
4 string arr2[3] { "templates",
5 "are", "fun" };
6 cout << sum(arr1) << endl;
7 cout << sum(arr2) << endl;
8 }

1 // Candidates
2
3 template <typename T> T sum(T (&)[3]);
4
5 string sum(string (&)[3]);



22 / 46

Function Templates
Overload Resolution

If a function call is performed;

1. Find candidate functions

2. overload resolution (decides which function to call)
1. exact matches
2. function templates
3. argument conversions
4. overload resolution fails



23 / 46

Function Templates
Overload Resolution

1. exact matches
• If a non‐template candidate function exactly

matches the argument types;
• This overload rule makes it possible to overload

functions.

2. function templates

3. argument conversions

4. overload resolution fails



23 / 46

Function Templates
Overload Resolution

1. exact matches

2. function templates
• If a function template can be instantiated to

exactly match the argument types;
• Will not always work, since some arguments might

not be template parameters.

3. argument conversions

4. overload resolution fails



23 / 46

Function Templates
Overload Resolution

1. exact matches
2. function templates
3. argument conversions

• type conversion can be applied to the arguments;
• if more than one function is considered, then the

best match is selected;
• if no unique best match is available, then none is

selected;
• this step will also consider function templates.

4. overload resolution fails



23 / 46

Function Templates
Overload Resolution

1. exact matches

2. function templates

3. argument conversions

4. overload resolution fails
• Either no appropriate function could be found;
• or there where multiple equally fitting candidate

functions.



24 / 46

Function Templates
A problem

1 template <typename T>
2 T sum(T (&array)[3]); // #1
3
4
5 string sum(string (&array)[3]); // #2
6
7 int main()
8 {
9 string array[3] { "hello", "there", "TDDD38" };

10 sum(array); // calls #2
11 sum<std::string>(array); // calls #1
12 }



25 / 46

Function Templates
A problem

• Ordinary function overloads does not take any
template parameters

• This means that whenever we explicitly specifies a
template paramter, wemust call a function template

• This means that our “special” overload for string is
ignored.

• This could potentially pose a problem...
• But it can be handled!



26 / 46

Function Templates
A problem: The fix

1 template <typename T>
2 T sum(T (&array)[3]); // #1
3
4 template <>
5 string sum<string>(string (&array)[3]); // #2
6
7 int main()
8 {
9 string array[3] { "hello", "there", "TDDD38" };

10 sum(array); // calls #2
11 sum<std::string>(array); // calls #2
12 }



27 / 46

Function Templates
A problem: The fix

• We can create a function template specialization for
our function template!

• A specialization is an additional variant of a function
template which specifies what the implementation of
the function should be if the template parameter
happens to exactlymatch the type specified in the
specialization.

• What this means is that the specialization is a part of
the function template and is NOT treated as its own
separate entity by the compiler



27 / 46

Function Templates
A problem: The fix

• This means that during overload resolution, the
specialization is not treated as a potential candidate
function

• Instead the specialization is only ever called when the
general function template is picked and T happens to
be std::string.

• This is a potential drawback of using specializations...



28 / 46

Function Templates
Function Specialization

1 template <>
2 string sum<string>(string (&array)[3])
3 {
4 string result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i] + " ";
8 }
9 return result;

10 }



29 / 46

Function Templates
Function Specialization

primary template
1 template <typename T>
2 T sum(T (&array)[3])
3 {
4 T result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i];
8 }
9 return result;
10 }

explicit template specialization
1 template <>
2 string sum<string>(string (&array)[3])
3 {
4 string result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i] + " ";
8 }
9 return result;
10 }



30 / 46

Function Templates
Function Specialization

• Override specific instantiations of the primary
template;

• specializations are not considered in overload
resolutions;

• however, the specialization will be used if the primary
template is considered;

• always prefer normal functions whenever possible,
since they will be prioritized over all function
templates.



31 / 46

Function Templates
What will happen? Why?

1 template <typename T>
2 void print(T) { cout << "1"; }
3
4 template <>
5 void print<int>(int) { cout << "2"; }
6
7 void print(int&&) { cout << "3"; }
8
9 int main()
10 {
11 int x{};
12 print(1.0);
13 print(1);
14 print(x);
15 }



1 References
2 Function Templates
3 Nontype Template Parameters
4 Compilation and Linking



33 / 46

Nontype Template Parameters
Generalize our program

1 template <typename T>
2 T sum(T (&array)[3])
3 {
4 T result{};
5 for (int i{0}; i < 3; ++i)
6 {
7 result += array[i];
8 }
9 return result;

10 }



33 / 46

Nontype Template Parameters
Generalize our program

1 template <typename T, unsigned N>
2 T sum(T (&array)[N])
3 {
4 T result{};
5 for (int i{0}; i < N; ++i)
6 {
7 result += array[i];
8 }
9 return result;

10 }



34 / 46

Nontype Template Parameters
Restrictions

• All values passed into nontype parameters must be
known during compilation;

• the type of the nontype parameter is limited;
• all nontype parameters, except for references, are

rvalues.



34 / 46

Nontype Template Parameters
Restrictions

• All values passed into nontype parameters must be
known during compilation;

• the type of the nontype parameter is limited;
• integral types
• enum types
• pointers
• lvalue references

• C++20:(some) class types
• C++20: floating point types

• all nontype parameters, except for references, are
rvalues.



34 / 46

Nontype Template Parameters
Restrictions

• All values passed into nontype parameters must be
known during compilation;

• the type of the nontype parameter is limited;
• integral types
• enum types
• pointers
• lvalue references
• C++20:(some) class types
• C++20: floating point types

• all nontype parameters, except for references, are
rvalues.



34 / 46

Nontype Template Parameters
Restrictions

• All values passed into nontype parameters must be
known during compilation;

• the type of the nontype parameter is limited;
• all nontype parameters, except for references, are

rvalues.



34 / 46

Nontype Template Parameters
Restrictions

• All values passed into nontype parameters must be
known during compilation;

• the type of the nontype parameter is limited;
• all nontype parameters, except for references, are

rvalues.
• are not modifiable
• does not have an address
• cannot be bound to references



35 / 46

Nontype Template Parameters
Fibonacci Example

1 template <int N = 2>
2 int fib()
3 {
4 return fib<N-2>() + fib<N-1>();
5 }
6 template <> int fib<0>() { return 1; }
7 template <> int fib<1>() { return 1; }
8
9 int main()

10 {
11 cout << fib<6>() << endl;
12 cout << fib() << endl;
13 }



36 / 46

Nontype Template Parameters
Fibonacci Example

• It is possible to set default values for template
parameters;

• note that this use of explicit template specializations is
required;

• using templates to perform calculations during
compile‐time.



36 / 46

Nontype Template Parameters
Fibonacci Example

• It is possible to set default values for template
parameters;

• note that this use of explicit template specializations is
required;

• using templates to perform calculations during
compile‐time.



36 / 46

Nontype Template Parameters
Fibonacci Example

• It is possible to set default values for template
parameters;

• note that this use of explicit template specializations is
required;

• using templates to perform calculations during
compile‐time.



1 References
2 Function Templates
3 Nontype Template Parameters
4 Compilation and Linking



38 / 46

Compilation and Linking
The compilation process

iostream file.h

main.cc file.cc

main.o file.oiostream.so

a.out

Preprocessor (g++)

Compilation (g++)

Linking (ld)

Translation Unit



38 / 46

Compilation and Linking
The compilation process

iostream file.h

main.cc file.cc

main.o file.oiostream.so

a.out

Preprocessor (g++)

Compilation (g++)

Linking (ld)

Translation Unit



38 / 46

Compilation and Linking
The compilation process

iostream file.h

main.cc file.cc

main.o file.oiostream.so

a.out

Preprocessor (g++)

Compilation (g++)

Linking (ld)

Translation Unit



38 / 46

Compilation and Linking
The compilation process

iostream file.h

main.cc file.cc

main.o file.oiostream.so

a.out

Preprocessor (g++)

Compilation (g++)

Linking (ld)

Translation Unit



38 / 46

Compilation and Linking
The compilation process

iostream file.h

main.cc file.cc

main.o file.oiostream.so

a.out

Preprocessor (g++)

Compilation (g++)

Linking (ld)

Translation Unit



38 / 46

Compilation and Linking
The compilation process

iostream file.h

main.cc file.cc

main.o file.oiostream.so

a.out

Preprocessor (g++)

Compilation (g++)

Linking (ld)

Translation Unit



39 / 46

Compilation and Linking
Compiling Templates

• When the compiler instantiates a template, the entire
definition of the template must be known;

• the compiler will compile each cc‐file in individual
translation units;

• it is during the compilation step that the compiler
instantiate templates;

• because of this, the entire definition of the template
must be known inside each translation unit, meaning it
is required that the templates are completely defined
in the header or implementation file directly.



40 / 46

Compilation and Linking
A way to structure your files

1 // foo.h
2 #ifndef FOO_H_
3 #define FOO_H_
4
5 template <typename T>
6 T foo(T);
7
8 // do NOT compile foo.tcc
9 // it will be handled

10 // when foo.h is included
11 #include "foo.tcc"
12 #endif FOO_H_

1 // foo.tcc
2 template <typename T>
3 T foo(T t)
4 {
5 return t;
6 }

1 #include "foo.h"
2 int main()
3 {
4 cout << foo(5) << endl;
5 }



41 / 46

Compilation and Linking
Compiling specializations

1 template <typename T>
2 T foo()
3 {
4 return T{};
5 }

1 template <>
2 int foo()
3 {
4 return 1;
5 }
6
7 // must be instantiated
8 // after the declaration
9 // of the specialization.

10 int n{foo<int>()};



42 / 46

Compilation and Linking
Compiling specializations

• Specializations must be declared before the first
explicit instantiation of that specialization of the
function template;

• both the definition and the declaration of the
specialization must be known;

• the compiler can have a hard time to detect these kinds
of errors;

• always make sure that all your function templates are
declared before you use them.



43 / 46

Compilation and Linking
What will be printed? Why?

1 template <typename T>
2 void fun(T) { cout << 1 << endl; }
3
4 template <>
5 void fun(int*) { cout << 2 << endl; }
6
7 template <typename T>
8 void fun(T*) { cout << 3 << endl; }
9
10 int main()
11 {
12 int* x{};
13 double* y{};
14
15 fun(1);
16 fun(x);
17 fun(y);
18 }



44 / 46

Compilation and Linking
What will be printed? Why?

• Specializations only apply to the closest matching
function template.

• So version 2 is a specialization of version 1.
• Since specializations are not consider during overload

resolution, this means overload resolution will only
ever consider version 1 and 3.

• int*matches version 3 better than version 1.



45 / 46

Compilation and Linking
What will be printed? Why?

1 template <typename T>
2 void fun(T) { cout << 1 << endl; }
3
4 template <typename T>
5 void fun(T*) { cout << 3 << endl; }
6
7 template <>
8 void fun(int*) { cout << 2 << endl; }
9
10 int main()
11 {
12 int* x{};
13 double* y{};
14
15 fun(1);
16 fun(x);
17 fun(y);
18 }



46 / 46

Compilation and Linking
Helpful limerick from the standard

When writing a specialization,
be careful about its location;

or to make it compile
will be such a trial

as to kindle its self‐immolation.

[temp.expl.spec]‐§7

https://www.ida.liu.se/~TDDD38/ISOCPP/temp.expl.spec.html#7


www.liu.se

www.liu.se

	References
	Function Templates
	Nontype Template Parameters
	Compilation and Linking

