TDDD38/726G82:
Adv. Programming in C++

Templates |
Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY



References

Function Templates

Nontype Template Parameters
Compilation and Linking



1
2 Function Templates

3 Nontype Template Parameters
4 Compilation and Linking

LINKOPING
I I." UNIVERSITY



3/46

References

What are references?

void fun(int x)

{
X += 1;
3

int main()
{
inty { 5 };
fun(y);
cout << y << endl; // 5

}

LINKOPING
II.“ UNIVERSITY



3/46

References

What are references?

void fun(int* x)
{

*x += 1,
}

int main()
{
inty { 5 };
fun(&y);
cout << y << endl; // 6

}

LINKOPING
II.“ UNIVERSITY



3/46

References

What are references?

void fun(int x)

{
X += 1;
3

int main()
{
inty { 5 };
fun(y);
cout << y << endl; // 5

}

LINKOPING
II.“ UNIVERSITY



3/46

References

What are references?

void fun(int& x)

{
X += 1;
3

int main()
{
inty { 5 };
fun(y);
cout << y << endl; // 6

}

LINKOPING
II.“ UNIVERSITY



4/46

References

What are references?

® By default, parameters in C++ are passed by-value
which means the value is copied into the function

® |f you want functions to have direct access to a variable
from the call site you have to pass said variable
indirectly

® This means that you have to pass a pointer or a
reference

LINKOPING
II.“ UNIVERSITY



4/46

References

What are references?

A reference and a pointer are very similar

But there are two major differences:

A pointer can be null, while a reference cannot

A pointer can change what it points to, a reference
cannot

II LINKOPING
@ UNIVERSITY



References

What are references?

® Pointers must be able to work with and modify both
the value it points to and the address it stores.

® Because of this pointers works with the dereference
operator (*) to access values and the addressof
operator (&) to access the address of a variable

4/46

LINKOPING
II.“ UNIVERSITY



References

What are references?

® But references cannot change once they have been
created, nor can they be empty

® Because of this we are only ever able to work with the
referenced value, never the address/reference

® This allows for simplified syntax when working with
references compared with pointers.

4/46

LINKOPING
II.“ UNIVERSITY



References

1
P
3 Nontype Template Parameters
4 Compilation and Linking

LINKOPING
I I.“ UNIVERSITY



6/46

Function Templates

int sum(int (&array)[3])
{

int result{};
for (int i{e}; i < 3; ++i)
{

result += array[i];

return result;

II LINKOPING
() UNIVERSITY



Function Templates

6/46

int sum(int (&array)[3])
{

int result{};
for (int i{@}; i < 3; ++i)
{

result += array[i];

return result;

double sum(double (&array)[3])
{

double result{};
for (int i{@}; i < 3; ++i)
{

result += array[i];

return result;

II LINKOPING
@ UNIVERSITY



Function Templates

6/46

int sum(int (&array)[3])
{

int result{};
for (int i{@}; i < 3; ++i)
{

result += array[i];

return result;

double sum(double (&array)[3])
{

double result{};
for (int i{@}; i < 3; ++i)
{

result += array[i];

return result;

string sum(string (&array)[3])

string result{};
for (int i{0}; i < 3; ++i)

result += array[i];

return result;

II LINKOPING
@ UNIVERSITY



Function Templates

6/46

int sum(int (&array)[3])
{

int result{};
for (int i{@}; i < 3; ++i)
{

result += array[i];

return result;

double sum(double (&array)[3])
{

double result{};
for (int i{@}; i < 3; ++i)
{

result += array[i];

return result;

string sum(string (&array)[3])

string result{};
for (int i{0}; i < 3; ++i)

result += array[i];

return result;

int main()

int arri[3] { 5, 5, 5 };

double arr2[3] { 1.05, 1.05, 1.04 };
string arr3[3] { "h", "i", "I" };
cout << sum(arrl) << endl;

cout << sum(arr2) << endl;

cout << sum(arr3) << endl;

II LINKOPING
@ UNIVERSITY



Function Templates

Templates

® Quite often we have functions that take specific type
but where the code would be exactly the same for
other types as well.

® Based on the knowledge we have so far this means we
need a lot of different overloads which are identical
(except for the types)

® This has several disadvantages: if the behaviour need
to change then we have to modify each overload, its
not always clear to the user if there are any subtle
differences between the versions etc.

7/46

LINKOPING
II.“ UNIVERSITY



Function Templates

Templates

® But the advantage is that we now have a function
which seemingly works for many different types.

® |n reality they of course are different overloads, but
since the implementations are the same (except for the
types)

® |f we could make the compiler generate these different
overloads, then most of the disadvantages disappear
but we keep the advantage.

® This is where templates come in!

7/46

LINKOPING
II.“ UNIVERSITY



8/46

Function Templates

Templates

template <typename T>
T sum(T (&array)[3])

T result{};
for (int i{e0}; i < 3; ++i)

result += array[i];

return result;

}

II LINKOPING
@ UNIVERSITY



Function Templates

Templates

template <typename T>
T sum(T (&array)[3])

T result{};
for (int i{e0}; i < 3; ++i)

result += array[i];

return result;

}

8/46

int main()

int arri[3] { 5, 5, 5 };

double arr2[3] { 1.05, 1.05, 1.04 };

string arr3[3] { "h", "i",
cout << sum(arrl) << endl;
cout << sum(arr2) << endl;
cout << sum(arr3) << endl;

TR

II LINKOPING
@ UNIVERSITY



9/46

Function Templates

Templates

® Templates generalizes functions by parametrizing data
types (i.e. making them configurable).

® The parametrized data types are filled in during
compilation, usually by the compiler (implcitly) or by
the code author (explicitly).

® The compiler will generate a function for each unique
data type that is used.

LINKOPING
II.“ UNIVERSITY



10/46

Function Templates

Templates

Template-parameters are not dynamic types;

they are just placeholders inside a template;
® the user will pass in types into the function template;

when this occurs, a function is generated;

this is called template instantiation.

LINKOPING
II.“ UNIVERSITY



11/46

Function Templates

Template Instantiation

template <typename T>

T sum(T (&array)[3]) otran ()

int arri[3] {1, 2, 3 };

double arr2[3] { 4.5, 6.7, 8.9 };
// explicitly instantiate sum

cout << sum<int>(arril) << endl;

// let the compiler instantiate sum
cout << sum(arr2) << endl;

T result{};
for (int i{e0}; i < 3; ++i)

result += array[i];

return result;

3} }

II LINKOPING
@ UNIVERSITY



12/46

Function Templates

Default Parameters

template <typename T = int> int main()

T identity(T x = {}) cout << identity() << endl;

cout << identity<double>(3.0) << endl;
cout << identity<string>() << endl;

}

return Xx;

II LINKOPING
@ UNIVERSITY



13/46

Function Templates

Template Argument Deduction

® To instantiate a function template every template
argument must be known;

® however: the user does not have to specify all
template arguments;

® whenever possible the compiler will deduce the
arguments that the user left out;

® this is called template argument deduction.

LINKOPING
II.“ UNIVERSITY



14/46

Function Templates

Template Argument Deduction

template <typename T>
T sum(T (&array)[3]);

int main()

{
int arri[3] { 1, 2, 3 };
cout << sum(arrl) << endl;

}

LINKOPING
II.“ UNIVERSITY



14/46

Function Templates

Template Argument Deduction

template <typename T>
T sum(T (&array)[3]);

int main()

{
int arri[3] { 1, 2, 3 };

cout << sum(arril) << endl;
}

LINKOPING
II.“ UNIVERSITY



14/46

Function Templates

Template Argument Deduction

template <typename T>
T sum(T (&array)[3]);

int main()

{
int arri[3] { 1, 2, 3 };

cout << sum(arril) << endl;
}

LINKOPING
II.“ UNIVERSITY



14/46

Function Templates

Template Argument Deduction

template <typename T>
T sum(T (&array)[3]);

int main(

{

int arr1[3]|{ 1, 2, 3 };
cout << sum(arril)) << endl;

}

LINKOPING
II.“ UNIVERSITY



14/46

Function Templates

Template Argument Deduction

template <typename T>
T sum(T| (&array)[3]);

arri[3] {1, 2, 3 };
cout << sum(arril) << endl;

LINKOPING
II.“ UNIVERSITY



14/46

Function Templates

Template Argument Deduction

template <typename T>
T sum(T (&array)[3]);

int main()
{
int arri[3] { 1, 2, 3 };
cout << sum<int>(arrl) << endl;

}

LINKOPING
II.“ UNIVERSITY



Function Templates

Template Argument Deduction

15/46

template <typename T1, typename T2>
void print(T1 a, T2 b)

cout << a << ' ' << b << endl;

using namespace std::literals;
int main()

print("val = ", 5);

II LINKOPING
@ UNIVERSITY



15/46

Function Templates

Template Argument Deduction

template <typename T1, typename T2> using namespace std::literals;
void print(T1 a, T2 b) int main()
cout << a << ' ' << b << endl; print<char const*, int>("val = ", 5);

II LINKOPING
@ UNIVERSITY



Function Templates

Template Argument Deduction

15/46

template <typename T1, typename T2>
void print(T1 a, T2 b)

cout << a << ' ' << b << endl;

using namespace std::literals;
int main()

print("val = "s, 5);

II LINKOPING
@ UNIVERSITY



15/46

Function Templates

Template Argument Deduction

template <typename T1, typename T2> using namespace std::literals;
void print(T1 a, T2 b) int main()
cout << a << ' ' << b << endl; print<string, int>("val = "s, 5);

II LINKOPING
@ UNIVERSITY



16/46

Function Templates

Side-note

"val = "isa C-string literal i.e. has type

char const?;

We want itto be std: :string, so how can we do
that?

Either we can construct a temporary string:
std::string{"val = "};

or we can import std: : literals so we get access
to “real” string-literals: "val = "s;

notice the s at the end of the literal: that indicates it is
of type std: :string.

LINKOPING
UNIVERSITY



17/46

Function Templates

Return Types

template <typename Ret, typename T1, typename T2>
Ret max(T1 const& a, T2 const& b)

if (a > b)
return a;
return b;

3

LINKOPING
II.“ UNIVERSITY



18/46

Function Templates

Return Types

template <typename Ret, typename T1, typename T2>
Ret max(T1 const&, T2 const&);
int main()

// ill-formed, cannot deduce 'Ret'
cout << max(5, 6.0)
<< endl;

LINKOPING
II.“ UNIVERSITY



18/46

Function Templates

Return Types

template <typename Ret, typename T1, typename T2>
Ret max(T1 const&, T2 const&);
int main()

// works, but tedious
cout << max<double, int, double>(5, 6.0)
<< endl;

LINKOPING
II.“ UNIVERSITY



18/46

Function Templates

Return Types

template <typename Ret, typename T1, typename T2>
Ret max(T1 const&, T2 const&);
int main()

// works and is nice!
cout << max<double>(5, 6.0)
<< endl;

LINKOPING
II.“ UNIVERSITY



19/46

Function Templates

Return Types

® The user have to specify Ret since the compiler is
unable to deduce the return type;

® however the compiler will deduce T1 and T2 from the
arguments passed to the function.

LINKOPING
II.“ UNIVERSITY



20/46

Function Templates

Going back to our example

template <typename T>
T sum(T (&array)[3])

T result{};
for (int i{0}; i < 3; ++i)

result += array[i];

return result;

}

II LINKOPING
@ UNIVERSITY



Function Templates

Going back to our example

template <typename T>
T sum(T (&array)[3])

T result{};
for (int i{@}; i < 3; ++i)

result += array[i];

return result;

}

20/46

string sum(string (&array)[3])

string result{};
for (int i{e}; i < 3; ++i)

result += array[i] + " ";

return result;

II LINKOPING
@ UNIVERSITY



Function Templates

Overload Resolution

int main()

int arri[3] {1, 2, 3 };
string arr2[3] { "templates",

cout << sum(arril) << endl;
cout << sum(arr2) << endl;

21/46

"are", "fun" };

// Candidates
template <typename T> T sum(T (&)[3]);

string sum(string (&)[3]);

II LINKOPING
@ UNIVERSITY



Function Templates

Overload Resolution

int main()

int arri[3] {1, 2, 3 };
string arr2[3] { "templates",

cout << sum(arri) << endl;

cout << sum(arr2) << endl;

21/46

"are", "fun" };

// Candidates
template <typename T> T sum(T (&)[3]);

string sum(string (&)[3]);

II LINKOPING
@ UNIVERSITY



21/46

Function Templates

Overload Resolution

int main()

int arri[3] {1, 2, 3 }; // Candidates

string arr2[3] { "templates",
"are”, "fun" };

cout << sum(arri) << endl;

cout << sum(arr2) << endl;

template <typename T> T sum(T (&)[37]);]

string sum(string (&)[3]);

II LINKOPING
@ UNIVERSITY



Function Templates

Overload Resolution

int main()

int arri[3] {1, 2, 3 };
string arr2[3] { "templates",

cout << sum(arril) << endl;

cout << sum(arr2) << endl;
}

21/46

"are", "fun" };

// Candidates
template <typename T> T sum(T (&)[3]);

string sum(string (&)[3]);

II LINKOPING
@ UNIVERSITY



Function Templates

Overload Resolution

int main()

int arri[3] {1, 2, 3 };
string arr2[3] { "templates",

cout << sum(arril) << endl;

cout << sum(arr2) << endl;
}

21/46

"are", "fun" };

// Candidates

template <typename T> T sum(T (&)[3]);

[string sum(string (&)[31);]

II LINKOPING
@ UNIVERSITY



Function Templates

Overload Resolution

If a function call is performed;

1. Find candidate functions

2. overload resolution (decides which function to call)

1.
2. function templates

3.

4. overload resolution fails

exact matches

argument conversions

22/46

LINKOPING
II.“ UNIVERSITY



Function Templates

Overload Resolution

1. exact matches

® |f a non-template candidate function exactly
matches the argument types;

® This overload rule makes it possible to overload
functions.

2. function templates
3. argument conversions

4. overload resolution fails

23/46

LINKOPING
II.“ UNIVERSITY



Function Templates

Overload Resolution

1. exact matches

2. function templates
® |f a function template can be instantiated to
exactly match the argument types;
o Will not always work, since some arguments might
not be template parameters.

3. argument conversions

4. overload resolution fails

23/46

LINKOPING
II.“ UNIVERSITY



23/46

Function Templates

Overload Resolution

1. exact matches
2. function templates
3. argument conversions
® type conversion can be applied to the arguments;
® if more than one function is considered, then the
best match is selected;
® if no unique best match is available, then none is
selected;
® this step will also consider function templates.
4. overload resolution fails

LINKOPING
II.“ UNIVERSITY



Function Templates

Overload Resolution

exact matches
function templates

argument conversions

Hw N Pe

overload resolution fails
® Either no appropriate function could be found;
® or there where multiple equally fitting candidate
functions.

23/46

LINKOPING
II.“ UNIVERSITY



Function Templates

A problem

template <typename T>
T sum(T (&array)[3]);

string sum(string (&array)[3]);

int main()

{
string array[3] { "hello", "there",
sum(array); // calls #2
sum<std::string>(array); // calls #1

}

// #1

// #2

"TDDD38" };

24/46

LINKOPING
II.“ UNIVERSITY



25/46

Function Templates

A problem

® Ordinary function overloads does not take any
template parameters

® This means that whenever we explicitly specifies a
template paramter, we must call a function template

® This means that our “special” overload for stringis
ignored.

® This could potentially pose a problem...
® But it can be handled!

LINKOPING
II.“ UNIVERSITY



26/46

Function Templates

A problem: The fix

template <typename T>
T sum(T (&array)[3]); // #1

template <>
string sum<string>(string (&array)[3]); // #2

int main()

{
string array[3] { "hello", "there", "TDDD38" };
sum(array); // calls #2
sum<std::string>(array); // calls #2

}

LINKOPING
II.“ UNIVERSITY



27/46

Function Templates

A problem: The fix

® \We can create a function template specialization for
our function template!

® A specialization is an additional variant of a function
template which specifies what the implementation of
the function should be if the template parameter
happens to exactly match the type specified in the
specialization.

® What this means is that the specialization is a part of
the function template and is NOT treated as its own
separate entity by the compiler

LINKOPING
II.“ UNIVERSITY



Function Templates

A problem: The fix

® This means that during overload resolution, the
specialization is not treated as a potential candidate
function

® |nstead the specialization is only ever called when the
general function template is picked and T happens to
be std::string.

® This is a potential drawback of using specializations...

27/46

LINKOPING
II.“ UNIVERSITY



28/46

Function Templates

Function Specialization

template <>
string sum<string>(string (&array)[3])

{
string result{};

for (int i{0}; i < 3; ++1i)

result += array[i] + " ";

}

return result;

}

LINKOPING
II.“ UNIVERSITY



29/46

Function Templates

Function Specialization

primary template explicit template specialization
template <typename T> template <>
T sum(T (&array)[3]) string sum<string>(string (&array)[3])
{
T result{}; string result{};
for (int i{6}; i < 3; ++i) for (int i{@}; i < 3; ++i)
result += array[i]; result += array[i] + " ";
return result; return result;
} }

II LINKOPING
@ UNIVERSITY



Function Templates

Function Specialization

® QOverride specific instantiations of the primary
template;

® specializations are not considered in overload
resolutions;

® however, the specialization will be used if the primary
template is considered;

® always prefer normal functions whenever possible,
since they will be prioritized over all function
templates.

30/46

LINKOPING
II.“ UNIVERSITY



31/46

Function Templates

What will happen? Why?

template <typename T>
void print(T) { cout << "1"; }

template <>
void print<int>(int) { cout << "2"; }

void print(int&&) { cout << "3"; }
int main()

int x{};

print(1.0);

print(1);
print(x);

II LINKOPING
@ UNIVERSITY



References
Function Templates

Compilation and Linking

LINKOPING
I I." UNIVERSITY



33/46

Nontype Template Parameters

Generalize our program

template <typename T>
T sum(T (&array)[3])

{
T result{};

for (int i{0}; i < 3; ++i)
{

result += array[i];
}

return result;

}

LINKOPING
II.“ UNIVERSITY



33/46

Nontype Template Parameters

Generalize our program

template <typename T, unsigned N>
T sum(T (&array)[N])

{
T result{};

for (int i{0}; i < N; ++i)
{

result += array[i];
}

return result;

}

LINKOPING
II.“ UNIVERSITY



34/46

Nontype Template Parameters

Restrictions

® All values passed into nontype parameters must be
known during compilation;

LINKOPING
II.“ UNIVERSITY



34/46

Nontype Template Parameters

Restrictions

® All values passed into nontype parameters must be
known during compilation;
® the type of the nontype parameter is limited;
® integral types
® enum types
® pointers
® |value references

LINKOPING
II.“ UNIVERSITY



34/46

Nontype Template Parameters
Restrictions

® All values passed into nontype parameters must be
known during compilation;
® the type of the nontype parameter is limited;
® integral types
enum types
pointers
Ivalue references
C++20:(some) class types
C++20: floating point types

LINKOPING
II.“ UNIVERSITY



34/46

Nontype Template Parameters

Restrictions

® All values passed into nontype parameters must be
known during compilation;

® the type of the nontype parameter is limited;

® all nontype parameters, except for references, are
rvalues.

LINKOPING
II.“ UNIVERSITY



34/46

Nontype Template Parameters

Restrictions

® All values passed into nontype parameters must be
known during compilation;

® the type of the nontype parameter is limited;

® all nontype parameters, except for references, are
rvalues.
® are not modifiable
® does not have an address
® cannot be bound to references

LINKOPING
II.“ UNIVERSITY



Nontype Template Parameters

Fibonacci Example

template <int N = 2>
int fib()
{

}
template <> int fib<@>() { return 1

template <> int fib<1>() { return 1

return fib<N-2>() + fib<N-1>();

int main()

{
cout << fib<6>() << endl;
cout << fib() << endl;

4

4

35/46

LINKOPING
II.“ UNIVERSITY



36/46

Nontype Template Parameters

Fibonacci Example

® |t is possible to set default values for template
parameters;

LINKOPING
II.“ UNIVERSITY



36/46

Nontype Template Parameters

Fibonacci Example

® |t is possible to set default values for template
parameters;

® note that this use of explicit template specializations is
required;

LINKOPING
II.“ UNIVERSITY



36/46

Nontype Template Parameters

Fibonacci Example

® |t is possible to set default values for template
parameters;

® note that this use of explicit template specializations is
required;

® using templates to perform calculations during
compile-time.

LINKOPING
II.“ UNIVERSITY



References
Function Templates
Nontype Template Parameters

A WN R

LINKOPING
I I.“ UNIVERSITY



Compilation and Linking

The compilation process

iostream file.h

NN

main.cc file.cc

T T

iostream.so main.o file.o
~_ 1
a.out

38/46

LINKOPING
II.“ UNIVERSITY



Compilation and Linking

The compilation process

iostream file.h

NN

main.cc file.cc

-

-

iostream.so main.o file.o

~ 1

a.out

38/46

Preprocessor (g++)

LINKOPING
II.“ UNIVERSITY



Compilation and Linking

The compilation process

iostream

iostream.so

file.h
AN
main.cc file.cc
T T
main.o file.o

~ T

a.out

38/46

Preprocessor (g++)

Compilation (g++)

LINKOPING
II.“ UNIVERSITY



38/46

Compilation and Linking

The compilation process

iostream file.h

\ /' \ Preprocessor (g++)

main.cc file.cc

1 1 Compilation (g++)
iostream.so main.o file.o
\ T / Linking (1d)
a.out

LINKOPING
II.“ UNIVERSITY



38/46

Compilation and Linking

The compilation process

iostream file.h

\ /' \ Preprocessor (g++)

main.cc file.cc

T T Compilation (g++)
iostream.so main.o file.o
\ T / Linking (1d)
a.out

LINKOPING
II.“ UNIVERSITY



Compilation and Linking

The compilation process

iostream file.h

AN N
main.cc file.cc
iostream.so| main.o file.o

1

~f

a.out

T

Translation Unit

38/46

Preprocessor (g++)
Compilation (g++)

Linking (1d)

LINKOPING
II.“ UNIVERSITY



Compilation and Linking

Compiling Templates

® When the compiler instantiates a template, the entire
definition of the template must be known;

® the compiler will compile each cc-file in individual
translation units;

® it is during the compilation step that the compiler
instantiate templates;

® because of this, the entire definition of the template
must be known inside each translation unit, meaning it
is required that the templates are completely defined
in the header or implementation file directly.

39/46

LINKOPING
II.“ UNIVERSITY



40/46

Compilation and Linking

A way to structure your files

// foo.h // foo.tcc

#ifndef FOO_H_ template <typename T>
#define FOO_H_ I foo(T t)

template <typename T> return t;

T foo(T); }

// do NOT compile foo.tcc #include "foo.h"

// it will be handled int main()

// when foo.h is included {

#include "foo.tcc" cout << foo(5) << endl;
#endif FOO_H_ }

LINKOPING
II.“ UNIVERSITY



41/46

Compilation and Linking

Compiling specializations

template <>

int foo()

{
template <typename T> return 1;
T foo()
{ }

FEELID Vi // must be instantiated
3 // after the declaration
// of the specialization.
int n{foo<int>()};

LINKOPING
II.“ UNIVERSITY



Compilation and Linking

Compiling specializations

® Specializations must be declared before the first
explicit instantiation of that specialization of the
function template;

® both the definition and the declaration of the
specialization must be known;

® the compiler can have a hard time to detect these kinds
of errors;

® always make sure that all your function templates are
declared before you use them.

42/46

LINKOPING
II.“ UNIVERSITY



43 /46

Compilation and Linking

What will be printed? Why?

template <typename T>
void fun(T) { cout << 1 << endl; }

template <>
void fun(int*) { cout << 2 << endl; }

template <typename T>
void fun(T*) { cout << 3 << endl; }

int main()

int* x{};
double* y{};

fun(1);
fun(x);
fun(y);

II LINKOPING
@ UNIVERSITY



44 /46

Compilation and Linking

What will be printed? Why?

® Specializations only apply to the closest matching
function template.

® So version 2 is a specialization of version 1.

® Since specializations are not consider during overload
resolution, this means overload resolution will only
ever consider version 1 and 3.

® int* matches version 3 better than version 1.

LINKOPING
II.“ UNIVERSITY



45/46

Compilation and Linking

What will be printed? Why?

template <typename T>
void fun(T) { cout << 1 << endl; }

template <typename T>
void fun(T*) { cout << 3 << endl; }

template <>
void fun(int*) { cout << 2 << endl; }

int main()

int* x{};
double* y{};

fun(1);
fun(x);
fun(y);

II LINKOPING
@ UNIVERSITY



Compilation and Linking

Helpful limerick from the standard

When writing a specialization,
be careful about its location;
or to make it compile
will be such a trial
as to kindle its self-immolation.

[temp.expl.spec]-§7

46/46

LINKOPING
II.“ UNIVERSITY


https://www.ida.liu.se/~TDDD38/ISOCPP/temp.expl.spec.html#7

II LINKOPING
o UNIVERSITY


www.liu.se

	References
	Function Templates
	Nontype Template Parameters
	Compilation and Linking

