
TDDD38/726G82:
Adv. Programming in C++
Course Introduction

Christoffer Holm

Department of Computer and information science



1 Course organization
2 C++
3 How to succeed



1 Course organization
2 C++
3 How to succeed



3 / 31

Course organization
Assumptions

In this course we assume that that you are:
• comfortable with procedural programming

• familiar with object‐oriented programming
• motivated to become a better programmer
• interested in a career involving programming



3 / 31

Course organization
Assumptions

In this course we assume that that you are:
• comfortable with procedural programming
• familiar with object‐oriented programming

• motivated to become a better programmer
• interested in a career involving programming



3 / 31

Course organization
Assumptions

In this course we assume that that you are:
• comfortable with procedural programming
• familiar with object‐oriented programming
• motivated to become a better programmer

• interested in a career involving programming



3 / 31

Course organization
Assumptions

In this course we assume that that you are:
• comfortable with procedural programming
• familiar with object‐oriented programming
• motivated to become a better programmer
• interested in a career involving programming



4 / 31

Course organization
Prerequisites

• No prior knowledge of C++?

• OK if you are willing to learn basics on your own!



4 / 31

Course organization
Prerequisites

• No prior knowledge of C++?
• OK if you are willing to learn basics on your own!



5 / 31

Course organization
Setting the stage

What is programming?



6 / 31

Course organization
What is programming?

• Programming isn’t just about computation and computers. If that was the
case, why would programming languages exist? Why would we care about
code quality?

• A large part of programming is abstraction and the formal expression of
ideas. Humans are good at intuition and language, but not so good at
computation and details, while computers are the complete opposite.
Programming is as much about bridging the gap between computation and
human thinking as it is about computation.

• Code is usually read and modified more times than it is written. More often
than not, programming is a collaborative effort and for large software
projects to succeed, planning and communication is key. A good
programmer doesn’t just implement computational solutions to problems,
they also write code which communicates the intent, purpose and
execution of code to other programmers.



7 / 31

Course organization
What is this course about?

• Expand our toolbox

• Build solid abstractions
• Sharpen our understanding
• Becoming the “guru”



7 / 31

Course organization
What is this course about?

• Expand our toolbox
• Build solid abstractions

• Sharpen our understanding
• Becoming the “guru”



7 / 31

Course organization
What is this course about?

• Expand our toolbox
• Build solid abstractions
• Sharpen our understanding

• Becoming the “guru”



7 / 31

Course organization
What is this course about?

• Expand our toolbox
• Build solid abstractions
• Sharpen our understanding
• Becoming the “guru”



8 / 31

Course organization
What this course is not about?

• Learning tools

• Memorizing solutions
• Writing specialized software
• Why C++ is the best language ever
• Why other languages are “better” than C++



8 / 31

Course organization
What this course is not about?

• Learning tools
• Memorizing solutions

• Writing specialized software
• Why C++ is the best language ever
• Why other languages are “better” than C++



8 / 31

Course organization
What this course is not about?

• Learning tools
• Memorizing solutions
• Writing specialized software

• Why C++ is the best language ever
• Why other languages are “better” than C++



8 / 31

Course organization
What this course is not about?

• Learning tools
• Memorizing solutions
• Writing specialized software
• Why C++ is the best language ever

• Why other languages are “better” than C++



8 / 31

Course organization
What this course is not about?

• Learning tools
• Memorizing solutions
• Writing specialized software
• Why C++ is the best language ever
• Why other languages are “better” than C++



9 / 31

Course organization
The course

• A self‐study course
• Lectures & seminars
• Office hours & teaching sessions
• http://www.ida.liu.se/~TDDD38/
• E‐mail: TDDD38@ida.liu.se
• Examination

http://www.ida.liu.se/~TDDD38/


9 / 31

Course organization
The course

• A self‐study course
• Nothing is mandatory (except the examination)
• It is your responsibility to learn
• How you use the resources provided by the course is up to you

• Lectures & seminars
• Office hours & teaching sessions
• http://www.ida.liu.se/~TDDD38/
• E‐mail: TDDD38@ida.liu.se
• Examination

http://www.ida.liu.se/~TDDD38/


9 / 31

Course organization
The course

• A self‐study course
• Lectures & seminars

• This course only has one session called a lecture (this one!)
• All other lectures are called seminars
• The reason for this is due to the slightly more interactive nature of

my teaching style, and to break student assumptions about what a
lecture is

• Office hours & teaching sessions
• http://www.ida.liu.se/~TDDD38/
• E‐mail: TDDD38@ida.liu.se
• Examination

http://www.ida.liu.se/~TDDD38/


9 / 31

Course organization
The course

• A self‐study course
• Lectures & seminars
• Office hours & teaching sessions

• Both types of sessions are meant for: questions, discussion and help
• Office hours are drop‐in times when I am available at my office
• Teaching sessions are sessions in classrooms where I am present
• The teaching sessions is student‐oriented, so questions and requests

from students drives what happens.

• http://www.ida.liu.se/~TDDD38/
• E‐mail: TDDD38@ida.liu.se
• Examination

http://www.ida.liu.se/~TDDD38/


9 / 31

Course organization
The course

• A self‐study course
• Lectures & seminars
• Office hours & teaching sessions
• http://www.ida.liu.se/~TDDD38/

• All material relevant for the course is found on the course website
• Slides, exercises, reading material, recommended reading etc.
• This website is completely open (and I will fight to keep it that way),

since this material might be useful for you later on in your careers

• E‐mail: TDDD38@ida.liu.se
• Examination

http://www.ida.liu.se/~TDDD38/


9 / 31

Course organization
The course

• A self‐study course
• Lectures & seminars
• Office hours & teaching sessions
• http://www.ida.liu.se/~TDDD38/
• E‐mail: TDDD38@ida.liu.se

• This E‐mail address leads to me
• You are free to ask anything via E‐mail, although the teaching quality

over E‐mail is not as good as in‐person, so prefer office hours and
teaching sessions for questions.

• Examination

http://www.ida.liu.se/~TDDD38/


9 / 31

Course organization
The course

• A self‐study course
• Lectures & seminars
• Office hours & teaching sessions
• http://www.ida.liu.se/~TDDD38/
• E‐mail: TDDD38@ida.liu.se
• Examination

• This course consists of three modules
• Each module is examined in isolation
• There are two ways to complete a module:

1. Pass the in‐course assessment (DAK<n>) for module <n>
2. Pass the specific module during the exam (DAT3)

http://www.ida.liu.se/~TDDD38/


9 / 31

Course organization
The course

• A self‐study course
• Lectures & seminars
• Office hours & teaching sessions
• http://www.ida.liu.se/~TDDD38/
• E‐mail: TDDD38@ida.liu.se
• Examination

• The DAK sessions are booked throughout the semester
• DAT3 has one part per module
• You only have to pass each module once
• You choose how to pass a module (DAK<n> or DAT3)
• Each module is graded by points
• The final grade is decided by these points
• see the course website for more information

http://www.ida.liu.se/~TDDD38/


10 / 31

Course organization
Optional Literature

General books:

Specific books:



11 / 31

Course organization
Optional Literature

General books
• C++ Primer, 5th edition, Lippman, Lajoie, Moo
• The C++ Programming Language, 4th edition,

Stroustrup
• A Tour of C++, 3rd edition, Stroustrup



11 / 31

Course organization
Optional Literature

Specific books
• C++ Templates: The Complete Guide, 2nd edition,

Vandevoorde, Josuttis, Gregor
• Effective Modern C++, 1st edition, Meyers
• The C++ Standard Library: A Tutorial and Reference,

2nd edition, Josuttis



12 / 31

Course organization
Literature

https://en.cppreference.com/w/

https://en.cppreference.com/w/


13 / 31

Course organization
The course philosophy

• Programming is a skill

• Skills develop with practice
• Improvement does not happen in a vacuum
• Understanding leads to efficiency



13 / 31

Course organization
The course philosophy

• Programming is a skill
• Skills develop with practice

• Improvement does not happen in a vacuum
• Understanding leads to efficiency



13 / 31

Course organization
The course philosophy

• Programming is a skill
• Skills develop with practice
• Improvement does not happen in a vacuum

• Understanding leads to efficiency



13 / 31

Course organization
The course philosophy

• Programming is a skill
• Skills develop with practice
• Improvement does not happen in a vacuum
• Understanding leads to efficiency



1 Course organization
2 C++
3 How to succeed



15 / 31

C++
Why C++?

• A complex language

• Both broad and deep
• Flexible
• High potential for efficiency
• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• C++ is old (first releasted 1985) and ever‐growing.
• Because of this C++ has a lot of complicated rules that are not always

intuitive at first inspection.
• Understanding these rules requires us to understand programming,

differences in hardware, various fields of programming and the
challenges presented by designing a language.

• The design of many other languages are based on C++ (many
language also tries to improve the design, to make it more intuitive),
so understanding C++ will generally help you understand other
languages.

• Both broad and deep
• Flexible
• High potential for efficiency
• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep

• Flexible
• High potential for efficiency
• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep

• C++ can work very close to the hardware, but it also supports very
high‐level paradigms such as: functional programming,
object‐oriented programming, generic programming and procedural
programming.

• So C++ is quite a broad language, you can do most things in it.
• These features are also highly customizable which means we can dig

quite deep into how they work and how they interact with other
features.

• Flexible
• High potential for efficiency
• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible

• High potential for efficiency
• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible

• C++ has a big focus on freedom, meaning the language itself avoids
forcing programmers to do things in specific ways.

• C++ aims to support as many styles of programming as possible, and
in particular: it is designed to allow for mixing idioms, paradigms and
abstractions.

• C++ is also designed to work independent of hardware, operating
system and platform.

• High potential for efficiency
• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible
• High potential for efficiency

• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible
• High potential for efficiency

• C++ compiles directly to assembly, which means it operates natively.
• The language is also designed with the goal of keeping runtime costs

as low as possible.
• Most modern compilers have extremely mature and compentent

optimization modules, partly because C++ is designed to be possible
to optimize, and partly because C++ is mature and popular.

• Note however that this doesn’t mean C++ is always faster than other
alternatives. To write efficient C++ code the programmer must be
quite competent.

• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible
• High potential for efficiency
• Requires deep understanding

• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible
• High potential for efficiency
• Requires deep understanding

• The language is not designed to be easy. It is designed to be efficient
and flexible.

• This means that in order to use C++ properly you must have a deep
understanding of many things: memory and hardware, how
high‐level abstractions interact with each other and with the
hardware, formal specifications of the language and software, and
what costs are associated with each decision.

• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible
• High potential for efficiency
• Requires deep understanding
• Very popular



15 / 31

C++
Why C++?

• A complex language
• Both broad and deep
• Flexible
• High potential for efficiency
• Requires deep understanding
• Very popular

• C++ has been used for many years, in many different fields and
industries.

• C++ is common in telecommunications, high‐frequency trading,
audio processing, the vehicle industry, the gaming industry, medical
software, visualization and many many more.

• Having deep knowledge of C++ means you have easier access to all of
these fields in your future career.



16 / 31

C++
What is C++?

• Compiled

• Standardized (syntax & semantics)
• Both high‐ and low‐level
• Platform agnostic

The language does not assume anything about
hardware or operating system (can even be written
without an OS entirely, called the freestanding
implementation of C++)



16 / 31

C++
What is C++?

• Compiled
• Standardized (syntax & semantics)

• Both high‐ and low‐level
• Platform agnostic

The language does not assume anything about
hardware or operating system (can even be written
without an OS entirely, called the freestanding
implementation of C++)



16 / 31

C++
What is C++?

• Compiled
• Standardized (syntax & semantics)
• Both high‐ and low‐level

• Platform agnostic

The language does not assume anything about
hardware or operating system (can even be written
without an OS entirely, called the freestanding
implementation of C++)



16 / 31

C++
What is C++?

• Compiled
• Standardized (syntax & semantics)
• Both high‐ and low‐level
• Platform agnostic

The language does not assume anything about
hardware or operating system (can even be written
without an OS entirely, called the freestanding
implementation of C++)



16 / 31

C++
What is C++?

• Compiled
• Standardized (syntax & semantics)
• Both high‐ and low‐level
• Platform agnostic

The language does not assume anything about
hardware or operating system (can even be written
without an OS entirely, called the freestanding
implementation of C++)



17 / 31

C++
Some background

• C++ started as an extension of C (1985)

• One of the early adopters of object‐oriented
programming

• Became standardized in 1998
• Is designed by committee
• Targets most tech‐industries



17 / 31

C++
Some background

• C++ started as an extension of C (1985)
• One of the early adopters of object‐oriented

programming

• Became standardized in 1998
• Is designed by committee
• Targets most tech‐industries



17 / 31

C++
Some background

• C++ started as an extension of C (1985)
• One of the early adopters of object‐oriented

programming
• Became standardized in 1998

• Is designed by committee
• Targets most tech‐industries



17 / 31

C++
Some background

• C++ started as an extension of C (1985)
• One of the early adopters of object‐oriented

programming
• Became standardized in 1998
• Is designed by committee

• Targets most tech‐industries



17 / 31

C++
Some background

• C++ started as an extension of C (1985)
• One of the early adopters of object‐oriented

programming
• Became standardized in 1998
• Is designed by committee
• Targets most tech‐industries



18 / 31

C++
How to use C++?

What you need:
• An operating system

(probably)
• A text editor
• A compiler



18 / 31

C++
How to use C++?

What you need:
• An operating system (probably)

• A text editor
• A compiler



18 / 31

C++
How to use C++?

What you need:
• An operating system (probably)
• A text editor

• A compiler



18 / 31

C++
How to use C++?

What you need:
• An operating system (probably)
• A text editor
• A compiler



19 / 31

C++
Compilers

Compilers Linux Mac Windows
clang (clang++) ✓ ✓ ✓

GCC (g++) ✓ ✓ ✓1

MSVC (cl.exe) × × ✓

1Ported as MinGW



20 / 31

C++
Compilers

About clang:
• A very portable compiler (works almost everywhere)
• Very good at optimizing (built on LLVM)
• Is compatible with both GCC and MSVC
• Open source, has Apple as primary contributor
• Available during the exam



20 / 31

C++
Compilers

About GCC:
• The oldest C++ compiler still in wide use today
• Has a very good standard library implementation
• Is (usually) installed by default on Linux
• Open source, part of GNU
• Available during the exam



20 / 31

C++
Compilers

About MSVC:
• Arguably the easiest to install on Windows
• Part of the Visual Studio IDE
• Has very good support for C++20 modules
• Good at optimizing code for Windows
• Proprietary, owned and maintained by Microsoft



21 / 31

C++
Text Editors

• Emacs
• Vim
• Visual Studio Code
• etc.

Use whatever you want, but these are available during the exam



21 / 31

C++
Text Editors

• Emacs
• Vim
• Visual Studio Code
• etc.

Use whatever you want, but these are available during the exam



22 / 31

C++
What about IDEs?

• CLion (All platforms)
• Visual Studio (Windows)



23 / 31

C++
What about IDEs?

• IDEs are very convenient and powerful tools that are built for efficiency and
optimized workflows.

• However, all IDEs are complex beasts with many features that solve
problems related to compilation and building, how header and source files
are related, various configurations of the compiler and many other things.
Each IDE solves these problems/configurations differently.

• Relying on a specific IDE will hinder you from fully understanding what the
problems the IDE solves actually are. It also locks your understanding into
one specific way of solving certain problems which hinders innovation and
personal growth as a programmer.

• Over‐reliance on specific tools can easily render you completely unable to
be productive in situations when such tools are unavailable.

• Learning one IDE doesn’t necessarily translates to productivity in another.
• But being productive without an IDE means you will for sure be productive

regardless of which IDE you use.



24 / 31

C++
Other Tools

• Debugger

(recommended: gdb)
• Static Analyzer

(recommended: cppcheck)

• Dynamic Analyzer

(recommended: valgrind)

There are many other tools, but mastering these will build
understanding.



24 / 31

C++
Other Tools

• Debugger (recommended: gdb)

• Static Analyzer

(recommended: cppcheck)

• Dynamic Analyzer

(recommended: valgrind)

There are many other tools, but mastering these will build
understanding.



24 / 31

C++
Other Tools

• Debugger (recommended: gdb)
• Static Analyzer

(recommended: cppcheck)
• Dynamic Analyzer

(recommended: valgrind)

There are many other tools, but mastering these will build
understanding.



24 / 31

C++
Other Tools

• Debugger (recommended: gdb)
• Static Analyzer (recommended: cppcheck)

• Dynamic Analyzer

(recommended: valgrind)

There are many other tools, but mastering these will build
understanding.



24 / 31

C++
Other Tools

• Debugger (recommended: gdb)
• Static Analyzer (recommended: cppcheck)
• Dynamic Analyzer

(recommended: valgrind)
There are many other tools, but mastering these will build
understanding.



24 / 31

C++
Other Tools

• Debugger (recommended: gdb)
• Static Analyzer (recommended: cppcheck)
• Dynamic Analyzer (recommended: valgrind)

There are many other tools, but mastering these will build
understanding.



24 / 31

C++
Other Tools

• Debugger (recommended: gdb)
• Static Analyzer (recommended: cppcheck)
• Dynamic Analyzer (recommended: valgrind)

There are many other tools, but mastering these will build
understanding.



1 Course organization
2 C++
3 How to succeed



26 / 31

How to succeed
Summary

• Program a lot

• Challenge yourself
• Question every line of code
• Do NOT take shortcuts



26 / 31

How to succeed
Summary

• Program a lot
• Challenge yourself

• Question every line of code
• Do NOT take shortcuts



26 / 31

How to succeed
Summary

• Program a lot
• Challenge yourself
• Question every line of code

• Do NOT take shortcuts



26 / 31

How to succeed
Summary

• Program a lot
• Challenge yourself
• Question every line of code
• Do NOT take shortcuts



27 / 31

How to succeed
Programming as a skill

• It doesn’t matter how much theory you learn and how many lines
of code you study, this will not make you a good programmer in
practice.

• The only thing that truly makes you better at programming is
actually programming.

• In particular it is important to come up with your own solutions.



28 / 31

How to succeed
Overcoming challenges

• Solving challenging problems is what drives growth.

• Knowing what you find challenging often reveals your gaps in skill
and knowledge.

• Improvement means filling in your gaps as much as possible.

• Improvement is not time limited. This course doesn’t just teach you
C++, it is supposed to teach you how to improve.

• Knowing how to improve will be useful your entire career (and
probably life).



29 / 31

How to succeed
Habits kills growth

• Software engineering is not about knowing every single pattern,
nor is it about memorizing how specific things are done.

• Software engineering is weighing costs versus benefit and
producing the best solution given a set of constraints.

• To become a expert engineer you must understand the costs,
effects and reasons behind every single line of code you read and
write.

• Therefore you should do your best to ensure that you understand
every piece of code you see.

• But you must also understand that this isn’t always possible, not for
anyone, so don’t blindly trust someone else’s solutions (including
mine).



30 / 31

How to succeed
LLM and AI usage

• I do not forbid AI for learning

• But I have strong reservations regarding its
effectiveness as a learning tool

• I suggest avoiding it as much as possible
• But when you do use it, please please PLEASE question

everything it produces.



30 / 31

How to succeed
LLM and AI usage

• I do not forbid AI for learning
• But I have strong reservations regarding its

effectiveness as a learning tool

• I suggest avoiding it as much as possible
• But when you do use it, please please PLEASE question

everything it produces.



30 / 31

How to succeed
LLM and AI usage

• I do not forbid AI for learning
• But I have strong reservations regarding its

effectiveness as a learning tool
• I suggest avoiding it as much as possible

• But when you do use it, please please PLEASE question
everything it produces.



30 / 31

How to succeed
LLM and AI usage

• I do not forbid AI for learning
• But I have strong reservations regarding its

effectiveness as a learning tool
• I suggest avoiding it as much as possible
• But when you do use it, please please PLEASE question

everything it produces.



31 / 31

How to succeed
What is expected of you

• Regular practice
• There are exercises available each week
• You might have other courses with assignments
• Personal projects

• Identify gaps/weaknesses
• Seek explanations (not answers)



31 / 31

How to succeed
What is expected of you

• Regular practice
• Identify gaps/weaknesses

• what issues do you regularly run into?
• Where do you get stuck?
• What behaviours surprises you?
• When do you feel the urge to look at solutions/StackOverflow or ask

an LLM? I.e. when do you seek external knowledge?
• All of these things reveal what you do and do not know

• Seek explanations (not answers)



31 / 31

How to succeed
What is expected of you

• Regular practice
• Identify gaps/weaknesses
• Seek explanations (not answers)

• Looking up how to do something will generally not be enough
• Why you don’t understand is more important for learning
• Your goal should not just be: “I want to solve this issue” it should be:

“I want to be able to construct my own solution”
• But to do this you must me able to understand the issue, the

mechanics and rules at play and how to work within them.



www.liu.se

www.liu.se

	Course organization
	C++
	How to succeed

