TDDD38/726G82:
Adv. Programming in C++

Language constructs and rules Il
Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY

1
2 Operator Overloading
3 Value categories

II LINKOPING
o UNIVERSITY

2/41

Compound Types

struct

structisinherited from C, but very common in C++ as well

struct Vector

{
int x { 0 };
inty {0}

3

LINKOPING
II.“ UNIVERSITY

2/41

Compound Types

struct

As we will see later on there are some difference between C
and C++, but for now, they are the same thing

struct Vector

{
int x { 0 };
inty {0}

3

LINKOPING
II.“ UNIVERSITY

2/41

Compound Types

struct

A struct bundles variables together into one variable, usually
called an object

struct Vector
X
; Ll
int x { 0 };
inty { 0 }; y.
3

Vector

LINKOPING
II.“ UNIVERSITY

2/41

Compound Types

struct

In memory this is represented by putting all data members in sequence, so
the declared order of members determines their stored order

struct Vector
{intx{O}; ’0|0|0|0|0|0|0|0‘
inty {0} X y

3

LINKOPING
II.“ UNIVERSITY

Compound Types

Classes and structs are the same thing!

3/41

struct Vector_Struct

{

int x;
int vy;
}

class Vector_Class

{

int x:
int vy;
3

What is the difference?

LINKOPING
II.“ UNIVERSITY

Compound Types

Classes and structs are the same thing!

3/41

struct Vector_Struct
{
public:
int x;
int vy;
}

class Vector_Class
{
private:
int x:
int vy;
1

LINKOPING
II.“ UNIVERSITY

4/41

Compound Types

structvs. class

® There are exactly two functional differences between
struct and class

® |Instruct every memberis public by default
® While in class all members are private by default

® The second difference is similiar but related to
inheritance (we’ll talk about it later)

® Besides this they are functionally the same thing

LINKOPING
II.“ UNIVERSITY

5/41

Compound Types

Mental Model

® Both structs and classes are compound types, meaning they are constructed
by storing multiple objects/variables

® These objects are called data members (sometimes called fields or instance
variables)

® We think of data members as separate variables stored inside the class
® This is mainly how the compiler sees it as well

® Once our code has compiled, objects will just be a sequence of variables
(specifically the data members)

® The data members will be stored in the same order as they are declared
(this is always true: the compiler is not allowed to change the order)

II LINKOPING
@ UNIVERSITY

Compound Types

Padding & Alignment

® All data types have a property called alignment

® A types alignment specifies an integer which each object’s
address must be evenly divisible by

® Example: It is common that int has alignment 4 which
means each 1nt must be located at an address which is a
multiple of 4.

6/41

LINKOPING
II.“ UNIVERSITY

Compound Types

Padding & Alignment

® Alignment is important in order to efficiently utilize the
architecture of the CPU (and memory units)

® Most modern CPUs have aligned access which means the
hardware is designed to efficiently read values of certain
sizes at certain alignments

6/41

LINKOPING
II.“ UNIVERSITY

6/41

Compound Types

Padding & Alignment

® class types consists of several data members (each with their
own alignment)

® To make sure that the memory representation of objects is
as efficient as possible the compiler has to make sure that
the data member with the largest alignment will be properly
aligned in all situations

® Because of this the class type will always have the same
alignment as the data member with the largest alignment

® This can however lead to some wasted space (called
padding)

LINKOPING
II.“ UNIVERSITY

7/481

Compound Types

Padding & Alignment

struct X
{
char a;
int b;
char c;
3

LINKOPING
II.“ UNIVERSITY

Compound Types

Padding & Alignment

struct X

char a;
int b;
char c;

7/481

II LINKOPING
@ UNIVERSITY

7/481

Compound Types

Padding & Alignment

struct X

{ ???
char a; k////////// \\\\\\\\\\$
int b;
char c; ’ | | | |

}i ~ ———

LINKOPING
II.“ UNIVERSITY

7/481

Compound Types

Padding & Alignment

struct X

{ A . Called padding
int b; — R
char c; ’ | | | |

i ~~ —

LINKOPING
II.“ UNIVERSITY

8/41

Compound Types

Padding & Alignment

® |n the previous (and next) example we assume that char has alignment 1
(meaning it can be stored on any address) while int has alignment 4
(meaning it must be stored on an address which is a multiple of 4)

® So X has alignment 4 (the largest alignment of all data members)
® The compiler must store all data members in their declared order
® Because of this, the compiler is forced to have 4 bytes before the int

® But we only really need 1 byte, so the compiler inserts 3 unused bytes

II LINKOPING
@ UNIVERSITY

8/41

Compound Types

Padding & Alignment

® After the int we store another char meaning we have add one more byte
® This puts the total size of X at 9
® But what happens if we need to store objects of type X in an array?

® Then the objects must be placed at addresses which are multiples of 4
(since the alignment of X is 4)

® But this can never happen if the size is not evenly divisible by 4

® So the compiler extends the size to 12 (it adds 3 more unused bytes at the
end)

II LINKOPING
@ UNIVERSITY

8/41

Compound Types

Padding & Alignment

® All of these unused bytes are called padding and can be inserted by the
compiler before any data member, as well as at the end of a struct/class

® However, we can control the padding somewhat by thinking about the
order we store our data members in (see next example)

® A general rule of thumb is to sort your data members based on size

® The best method is to sort your data members in descending order
(meaning you put the largest types first)

II LINKOPING
@ UNIVERSITY

9/41

Compound Types

Padding & Alignment

struct X
{
int b;
char a;
char c;

i

LINKOPING
II.“ UNIVERSITY

9/41

Compound Types

Padding & Alignment

struct X

{

int b;

char o HEEEEEEN
char c; —

} b a o

II LINKOPING
@ UNIVERSITY

9/41

Compound Types

Padding & Alignment

ztruct X Padding
int b; l
char o) HEEEEN

} b a o

LINKOPING
II.“ UNIVERSITY

10/41

Compound Types

Mental Model ’ What we write

struct Vector
double length()
{

double x2 { x * x };

double y2 {y * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;
}

int main()

Vector v { 1, 1 };
std::cout << v.length() << std::endl;
}

II LINKOPING
@ UNIVERSITY

10/41

Compound Types

Mental Model ’ What we write ‘

struct Vector
£

double length()
{

double x2 { x * x };
double y2 { y * vy };
return std::sqrt(x2 + y2);

}

int x;

int y;

’

’ A member function ‘

int main()

Vector v { 1, 1 };
std::cout << v.length() << std::endl;
}

II LINKOPING
@ UNIVERSITY

Compound Types

Mental Model ’ What we write

struct Vector
double length()
{

double x2 { x * x };

double y2 {y * vy };

return std: sqrt(xz +y2);
}

int x;
int y;

i
int main()

Vector v { 1, 1 }
) std:icout << How to call a member function

10/41

LINKOPING
UNIVERSITY

11/41

Compound Types

Mental Model ’ ~ What the compiler sees

struct Vector
int x;
int y;

}

double length(Vector* this)
double x2 { this->x * this->x };
double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()
Vector v { 1, 1 };

std::cout << length(&v) << std::endl;
}

II LINKOPING
@ UNIVERSITY

11/41

Compound Types

Mental Model ’ ~ What the compiler sees ‘

struct Vector

int x;
int .

= what the compiler translates member functions to

double length(Vector* this)
{

double x2 { this->x * this->x };
double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()

Vector v { 1, 1 };
std::cout << length(&v) << std::endl;

}

II LINKOPING
@ UNIVERSITY

Compound Types

Mental Model

’ ~ What the compiler sees

struct Vector
int x;
int y;

}

double length(Vector* this)
{

double x2 { this->x * this->x };
double y2 { this->y * this->y };

return std::sqrt(x2 + y2);

int main()

Vector v { 1, 1 };
std::cout << [[ength(&v)] <<
}

How the compiler calls the member function

11/41

LINKOPING
UNIVERSITY

Compound Types

Mental Model

® We call member functions on objects

® The compiler translates member functions to ordinary
functions which takes the object as the first parameter

® Then every call to a member function is just translated
to a normal function call.

® This means that member functions are NOT stored in

the object itself. So Llength () doesn’t change the
memory representation of Vector at all

12/41

LINKOPING
II.“ UNIVERSITY

13/41

Compound Types

const objects

struct Vector
double length()
{

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;
}

int main()

Vector v { 1, 1 };
std::cout << v.length() << std::endl;
}

II LINKOPING
@ UNIVERSITY

13/41

Compound Types

const objects

struct Vector
double length()
{

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;
}

int main()

Vector v { 1, 1 };
std::cout << v.length() << std::endl;
}

II LINKOPING
@ UNIVERSITY

13/41

Compound Types

const objects

struct Vector
double length()
{

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;
}

int main()

Vector const v { 1, 1 };
std::cout << v.length() << std::endl;
}

II LINKOPING
@ UNIVERSITY

13/41

Compound Types

const objects

struct Vector
double length()
{

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;
}

int main()

Vector const v { 1, 1 };
std::cout << v.length() << std::endl;
}

II LINKOPING
@ UNIVERSITY

13/41

Compound Types

const objects

struct Vector
double length()
{

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;
}

int main()

Vector const v { 1, 1 };
std::cout << v.length() << std::endl;
}

II LINKOPING
@ UNIVERSITY

14/41

Compound Types

Let’s translate to our mental model

LINKOPING
II.“ UNIVERSITY

Compound Types

Mental Model

struct Vector
int x;
int y;

}

double length(Vector* this)
double x2 { this->x * this->x };
double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()
Vector const v { 1, 1 };

std::cout << length(&v) << std:
}

This is what the compiler sees

rendl;

15/41

LINKOPING
UNIVERSITY

Compound Types

Mental Model

struct Vector
int x;
int y;

}

double length(Vector* this)
double x2 { this->x * this->x };

double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()

‘ This is what the compiler sees

Vector const v { 1
std::cout << lengt <<
}

What is the type of &v?

15/41

LINKOPING
UNIVERSITY

15/41

Compound Types

Mental Model

struct Vector

int x;
int y;
}

double length(Vector* this e 0 .
! gent 1) ‘ This is what the compiler sees

double x2 { this->x * this->x };
double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()

Vector const v { 1,
std::cout << length(<<
}

ItisVector const*

II LINKOPING
@ UNIVERSITY

Compound Types

Mental Model

struct Vector
int x;
int y;

}

(Vector* this)

double x2 { this->} * this->x };
double y2 { this->y| * this->y };
return std::sqrt(x2\+ y2);

double lengt
{

int main()

‘ This is what the compiler sees

15/41

Vector const v { 1,
std::cout << lengt

}

Which doesn’t match the parameter... ‘

I

LINKOPING
UNIVERSITY

Compound Types

Mental Model

struct Vector
int x;
int y;

}

(Vector* this)

double x2 { this->} * this->x };
double y2 { this->y| * this->y };
return std::sqrt(x2\+ y2);

double lengt
{

int main()

‘ This is what the compiler sees

Vector const v { 1,

15/41

std::cout << lengt <<| We need the parameter to take Vector const*

i I
II LINKOPING
@& UNIVERSITY

16/41

Compound Types

Enter const member functions!
The code

struct Vector

{
double length() const

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;
}

int main()

Vector const v { 1, 1 };
cout << v.length() << endl;

}

II LINKOPING
@ UNIVERSITY

Compound Types

Enter const member functions!

The code

16/41

The compilers view

struct Vector
double length() const

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;

;
int main()

Vector const v { 1, 1 };
cout << v.length() << endl;

}

struct Vector
{.

int x;

int y;
¥

double length(Vector const* this)
double x2 { this->x * this->x };
double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()
Vector const v { 1, 1 };

cout << length(&v) << endl;

}

II LINKOPING
@ UNIVERSITY

Compound Types

Enter const member functions!
The code

16/41

The compilers view

struct Vector

{
double length() mﬂ\
{

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;

;
int main()

Vector const v { 1, 1 };
cout << v.length() << endl;

}

struct Vector
{

int x;

int y;

double length(Vector * this)
{

double x2 { this->x * this->x };
double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()
Vector const v { 1, 1 };

cout << length(&v) << endl;

}

II LINKOPING
@ UNIVERSITY

Compound Types

Enter const member functions!
The code

16/41

The compilers view

struct Vector

{
double length() mﬂ\
{

double x2 { x * x };

double y2 { v * vy };

return std::sqrt(x2 + y2);
}

int x;
int y;

;
int main()

Vector const v { 1, 1 };
cout << v.length() << endl;

}

struct Vector
{

int x;

int y;

double length(Vector * this)
{

dolble x2 { this->x * this->x };
double y2 { this->y * this->y };
return std::sqrt(x2 + y2);

int main()
Vector const v { 1, 1 };

cout << length(&v) << endl;

}

II LINKOPING
@ UNIVERSITY

17/41

Compound Types

Initialization

struct Vector
{
int Xx;
int y; X:
}i V&
int main() y:
{ Vector
Vector v { };
}

LINKOPING
II.“ UNIVERSITY

17/41

Compound Types

Initialization

struct Vector
{
int x { 1 };
inty {0} X:
3 V!
int main() y:
{ Vector
Vector v { };
}

LINKOPING
II.“ UNIVERSITY

17/41

Compound Types

Initialization

struct Vector
{
int x { 1 };
inty {0 }; X:
3 V:
int main() y:
{ Vector
Vector v { 2, 3 };
}

LINKOPING
II.“ UNIVERSITY

Compound Types

Initialization

® |f we don’t explicitly initialize the data members they
will be undefined (in the first example)

® But we can give each data member a default value by
adding initialization to the data members (second
example)

® But we can always override the default if we explicitly
initialize the data members (third example)

18/41

LINKOPING
II.“ UNIVERSITY

19/41

Compound Types

Constructor

struct Vector

Vector(int value)
: x { value }, y { value }

{ L]
int x; V.
int y;

¥; y:

int main() Vector

Vector v { 5 };

II LINKOPING
@ UNIVERSITY

19/41

Compound Types

Constructor

struct Vector

y

Vector(int value)

: x { value }, y { value }
{ Eonstructor N
} .
int x; V.
int y; .
} y:

int main() VeCtOr

Vector v { 5 };

II LINKOPING
@ UNIVERSITY

19/41

Compound Types

Constructor

struct Vector

Vector(int value)
i x { value }, y { value }

§ x:|5]

int x; v

};int i y: IEiI

int main()

Vector
| vector v { 5 }; ’Constructor call
J
]

II LINKOPING
() UNIVERSITY

Compound Types

Constructor

struct Vector

Viector{int—value)

DX { value }, y { value }

[m

ember initializer list ‘

}

int x;

int y;
}

int main()

Vector v { 5 };

V.

x:|5]
y:[5]

Vector

19/41

II LINKOPING
@ UNIVERSITY

20/41

Compound Types

member initializer list

® The member initializer list is a special syntax for
constructors

® |t allows us to override the default initializers for data
members in a specific constructor call

® The member initializer list is a comma separated list of
initialization statements for all/any data members (see
example on previous slide)

® This is prefered over assignment (see next example)

LINKOPING
II.“ UNIVERSITY

21/41

Compound Types

Member initializer list vs. assighment

class X

{
public:
X(int c)

{ Don’t write code like this...

QD
I
(9]

LINKOPING
II.“ UNIVERSITY

21/41

Compound Types

Member initializer list vs. assighment

class X
{
public:
X(int c)
{ ...It doesn’t work for const
a=c;
b
}
private:
int const a;
int b;
Fi

I
O
+

=

LINKOPING
II.“ UNIVERSITY

21/41

Compound Types

Member initializer list vs. assighment

class X

{
public:
X(int c)

{ ...It doesn’t work for const

QD
I
(9]

LINKOPING
II.“ UNIVERSITY

Compound Types

Member initializer list vs. assighment

class X

{
public:
X(int c)

...It doesn’t work for const

21/41

LINKOPING
II.“ UNIVERSITY

Compound Types

Member initializer list vs. assighment

class X

{

public:
X(int c)

"a Tey,

b{c+1}
{
}

private:
int a;
int b;

iy

22/41

LINKOPING
II.“ UNIVERSITY

22/41

Compound Types

Member initializer list vs. assighment

class X
{
public:
X(int c)
ra{c} ‘ It does work for const!

b{c+1}
{
}

private:
int const a;
int b;

iy

LINKOPING
II.“ UNIVERSITY

23/41

Compound Types

What will be printed?

class X

{

public:
void print(int&) { std::cout << "1"; }
void print(int consté&) { std::cout << "2"; }

void print(int const&) const { std::cout << "3"; }

}
int main()

X x1{3};

X const x2 { };
int y1 { };

int const y2 { };

x1.print(y1);
x2.print(y1);
x1.print(y2);
X2.print(y2);

II LINKOPING
@ UNIVERSITY

1 Compound Types
p
3 Value categories

II LINKOPING
o UNIVERSITY

25/41

Operator Overloading

Introduction

® A powerful aspect of C++ is the fact that we can define
operators for our own user-defined types

® This allows us to greatly simplify how we use our
classes/structs (i.e. simplify the interface)

® This is called operator overloading

® |f used correctly it will make our code easier to
understand by relating it to mathmatical notation

e BUT, if used incorrectly it will make our code harder to
understand, so we have to be careful...

LINKOPING
II.“ UNIVERSITY

26/41

Operator Overloading

Extending Vector

’

Vector v { 1, 2 };
Vector u { 3, 1 }

// This is our aim
Vector w { 3*v + u };

assert(w.x == 3*V.Xx + u.X);
assert(w.y == 3*v.y + u.y);

LINKOPING
II.“ UNIVERSITY

27/41

Operator Overloading

How it works

3*v + u

LINKOPING
II.“ UNIVERSITY

27/41

Operator Overloading

How it works

(3*v) + u

LINKOPING
II.“ UNIVERSITY

27/41

Operator Overloading

How it works

((3*v) + u)

LINKOPING
II.“ UNIVERSITY

27/41

Operator Overloading

How it works

operator+((3*v), u)

LINKOPING
II.“ UNIVERSITY

27/41

Operator Overloading

How it works

operator+(operator*(3, v), u)

LINKOPING
II.“ UNIVERSITY

Operator Overloading

How it works

Whenever the compiler encounters an operator involving a class type it
knows that this must be an operator overload

If it for example finds a+b then the compiler will translate it to a function
call

Specifically, the compiler will call: operator+(a, b)

Note that a is to the left of + so it will be the first parameter and b is to the
right so it is the second parameter.

If operator+(a, b) doesn'texist, then it will instead try
a.operator+(b)

Note: If both versions exists then it is ambigious...

Read more: https://en.cppreference.com/w/cpp/language/operators

28/41

LINKOPING
UNIVERSITY

https://en.cppreference.com/w/cpp/language/operators

29/41

Operator Overloading

When it works

// With operator overloads
5*(u + v) + w;

// Without
add(multiply(5, add(u, v)), w);

LINKOPING
II.“ UNIVERSITY

29/41

Operator Overloading

When it works

// With operator overloads
5*(u + v) + w;

// Without
add(multiply(5, add(u, v)), w);

Which is easier to understand/read?

LINKOPING
II.“ UNIVERSITY

30/41

Operator Overloading

When it doesn’t work...

LINKOPING
II.“ UNIVERSITY

Operator Overloading

When it doesn’t work...

u* v
Dot product?

30/41

LINKOPING
II.“ UNIVERSITY

Operator Overloading

When it doesn’t work...

u* v
Dot product?
Scalar product?

30/41

LINKOPING
II.“ UNIVERSITY

Operator Overloading

When it doesn’t work...

u*v
Dot product?
Scalar product?
Element-wise multiplication?

30/41

LINKOPING
II.“ UNIVERSITY

31/41

Operator Overloading

When it doesn’t work...
® Lesson #1: Operator overloading only works if it is obvious
what it means.

® The example given on the previous slide multiplies a vector
with a vector

® But there are multiple ways to define “vector multiplication”
so it is not clear from just reading the code what is meant.

® This is bad, but accepted by the language.

® |tis our job to carefully consider whether an operator
overload will lead to ambiguity or not...

LINKOPING
II.“ UNIVERSITY

32/41

Operator Overloading

When it doesn’t work...

Vector v { 1, 2 };
Vector u { 3, 1 };
Vector w { v + u };

// What do we expect to be printed?
cout << v.x << endl;

LINKOPING
II.“ UNIVERSITY

32/41

Operator Overloading

When it doesn’t work...

Compare with the int case

LINKOPING
II.“ UNIVERSITY

32/41

Operator Overloading

When it doesn’t work...

int v { 1 };
int u { 3 };
intw {v+ul};

// Here we expect v to be unchanged
cout << v << endl;

LINKOPING
II.“ UNIVERSITY

32/41

Operator Overloading

When it doesn’t work...

Vector v { 1, 2 };
Vector u { 3, 1 };
Vector w { v + u };

// So here v.x should be unchanged
cout << v.x << endl;

LINKOPING
II.“ UNIVERSITY

33/41

Operator Overloading

When it doesn’t work...

® Lesson #2: Operators should have the expected behaviour

® This means that an operators semantics should be as similar to the
behaviour of corresponding operator on fundamental types

® On the previous slide we for example saw that operator+ should not
modify any of the operands.

® So before doing an operator overload, ask yourself whether it behaves the
same way as for the builtin types.

® Note: It is legal to break the semantics, but it is a very bad practice to do so.

II LINKOPING
@ UNIVERSITY

34/41

Operator Overloading

Design principle

When overloading an operator make sure that:

LINKOPING
II.“ UNIVERSITY

Operator Overloading

Design principle

When overloading an operator make sure that:

® The behaviour is obvious and makes sense

34/41

LINKOPING
II.“ UNIVERSITY

34/41

Operator Overloading

Design principle

When overloading an operator make sure that:
® The behaviour is obvious and makes sense

® [t is similar to the fundamental type operators

LINKOPING
II.“ UNIVERSITY

1 Compound Types
2 Operator Overloading
3

II LINKOPING
o UNIVERSITY

36/41

Value categories

Assignments

int x { 3 };

X = 5; // OK

3 = 5; // NOT OK
X + 1 = 3; // NOT OK

LINKOPING
II.“ UNIVERSITY

36/41

Value categories

Assignments

int

X
5;
5; // NOT OK
1= 3; // NOT OK

X w X

LINKOPING
II.“ UNIVERSITY

37/41

Value categories

Assignments

® X is what is called an Ivalue

® |values are expressions that refer to a specific
object/variable

® Whenever we use the expression X in a scope it will
always refer to the same object

® expressions such as 3, int{} and x+1 are rvalues

® rvalues are expressions that generate a new value
whenever it appears.

LINKOPING
II.“ UNIVERSITY

37/41

Value categories

Assignments

® Another way to differentiate between them is to think
about assignments (Note that these intutions aren’t
always correct).

® X is an lvalue (left-hand-side value) if it can appear on
left side of an assignment.

e X+1 is an rvalue (right-hand-side value) since it can
only appear on the right-hand-side of an assignment.

LINKOPING
II.“ UNIVERSITY

37/41

Value categories

Assignments

® |f an object have identity, i.e. if there is a way for us to
refer to the object. Then every expression that refers to
that object will be an lvalue.

® For example: if there is a pointer to the object, if the
object is a variable or if it is a part of a bigger object
(like an array or a class).

® So things like: *ptr,array[0] etc. are also Ivalues.

® rvalues are generally expressions that are not Ivalues.

LINKOPING
II.“ UNIVERSITY

Value categories

Ivalues & rvalues

38/41

Ivalues rvalues
X 5

*ptr int{}
array[0] X + 1
// etc. // etc.

LINKOPING
II.“ UNIVERSITY

39/41

Value categories

What is the value category of the expression?

int const x { };
int zero()

{
}

return x;

zero() // <- what is the value category?

LINKOPING
II.“ UNIVERSITY

40/41

Value categories

What is the value category of the expression?

int array[3];

*(&array[0] + 1) // <- what is the value category?

LINKOPING
II.“ UNIVERSITY

41/41

Value categories

What is the value category of the expression?

int const x { };
int& zero()

{
}

return x;

zero() // <- what is the value category?

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

www.liu.se

	Compound Types
	Operator Overloading
	Value categories

