
TDDD38/726G82:
Adv. Programming in C++
Language constructs and rules II

Christoffer Holm

Department of Computer and information science



1 Compound Types
2 Operator Overloading
3 Value categories



2 / 41

Compound Types
struct

struct is inherited from C, but very common in C++ as well

1 struct Vector
2 {
3 int x { 0 };
4 int y { 0 };
5 };



2 / 41

Compound Types
struct

As we will see later on there are some difference between C
and C++, but for now, they are the same thing

1 struct Vector
2 {
3 int x { 0 };
4 int y { 0 };
5 };



2 / 41

Compound Types
struct

A struct bundles variables together into one variable, usually
called an object

1 struct Vector
2 {
3 int x { 0 };
4 int y { 0 };
5 };

x: 0

y: 0

Vector



2 / 41

Compound Types
struct

In memory this is represented by putting all datamembers in sequence, so
the declared order of members determines their stored order

1 struct Vector
2 {
3 int x { 0 };
4 int y { 0 };
5 };

0 0 0 0 0 0 0 0

x y



3 / 41

Compound Types
Classes and structs are the same thing!

1 struct Vector_Struct
2 {
3
4 int x;
5 int y;
6 };

1 class Vector_Class
2 {
3
4 int x:
5 int y;
6 };

What is the difference?



3 / 41

Compound Types
Classes and structs are the same thing!

1 struct Vector_Struct
2 {
3 public:
4 int x;
5 int y;
6 };

1 class Vector_Class
2 {
3 private:
4 int x:
5 int y;
6 };

What is the difference?



4 / 41

Compound Types
struct vs. class

• There are exactly two functional differences between
struct and class

• In struct every member is public by default
• While in class all members are private by default
• The second difference is similiar but related to

inheritance (we’ll talk about it later)
• Besides this they are functionally the same thing



5 / 41

Compound Types
Mental Model

• Both structs and classes are compound types, meaning they are constructed
by storing multiple objects/variables

• These objects are called data members (sometimes called fields or instance
variables)

• We think of data members as separate variables stored inside the class
• This is mainly how the compiler sees it as well
• Once our code has compiled, objects will just be a sequence of variables

(specifically the data members)
• The data members will be stored in the same order as they are declared

(this is always true: the compiler is not allowed to change the order)



6 / 41

Compound Types
Padding & Alignment

• All data types have a property called alignment

• A types alignment specifies an integer which each object’s
address must be evenly divisible by

• Example: It is common that int has alignment 4 which
means each intmust be located at an address which is a
multiple of 4.



6 / 41

Compound Types
Padding & Alignment

• Alignment is important in order to efficiently utilize the
architecture of the CPU (and memory units)

• Most modern CPUs have aligned access which means the
hardware is designed to efficiently read values of certain
sizes at certain alignments



6 / 41

Compound Types
Padding & Alignment

• class types consists of several data members (each with their
own alignment)

• To make sure that the memory representation of objects is
as efficient as possible the compiler has to make sure that
the data member with the largest alignment will be properly
aligned in all situations

• Because of this the class type will always have the same
alignment as the data member with the largest alignment

• This can however lead to some wasted space (called
padding)



7 / 41

Compound Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 };



7 / 41

Compound Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 };

a b c



7 / 41

Compound Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 };

a b c

???



7 / 41

Compound Types
Padding & Alignment

1 struct X
2 {
3 char a;
4 int b;
5 char c;
6 };

a b c

Called padding



8 / 41

Compound Types
Padding & Alignment

• In the previous (and next) example we assume that char has alignment 1
(meaning it can be stored on any address) while int has alignment 4
(meaning it must be stored on an address which is a multiple of 4)

• So X has alignment 4 (the largest alignment of all data members)
• The compilermust store all data members in their declared order
• Because of this, the compiler is forced to have 4 bytes before the int
• But we only really need 1 byte, so the compiler inserts 3 unused bytes



8 / 41

Compound Types
Padding & Alignment

• After the int we store another charmeaning we have add one more byte
• This puts the total size of X at 9
• But what happens if we need to store objects of type X in an array?
• Then the objects must be placed at addresses which are multiples of 4

(since the alignment of X is 4)
• But this can never happen if the size is not evenly divisible by 4
• So the compiler extends the size to 12 (it adds 3 more unused bytes at the

end)



8 / 41

Compound Types
Padding & Alignment

• All of these unused bytes are called padding and can be inserted by the
compiler before any data member, as well as at the end of a struct/class

• However, we can control the padding somewhat by thinking about the
order we store our data members in (see next example)

• A general rule of thumb is to sort your data members based on size
• The best method is to sort your data members in descending order

(meaning you put the largest types first)



9 / 41

Compound Types
Padding & Alignment

1 struct X
2 {
3 int b;
4 char a;
5 char c;
6 };



9 / 41

Compound Types
Padding & Alignment

1 struct X
2 {
3 int b;
4 char a;
5 char c;
6 }; ab c



9 / 41

Compound Types
Padding & Alignment

1 struct X
2 {
3 int b;
4 char a;
5 char c;
6 }; ab c

Padding



10 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

What we write



10 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Amember function

What we write



10 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

How to call a member function

What we write



11 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

≈What the compiler sees



11 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

≈ what the compiler translates member functions to

≈What the compiler sees



11 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

How the compiler calls the member function

≈What the compiler sees



12 / 41

Compound Types
Mental Model

• We call member functions on objects
• The compiler translates member functions to ordinary

functions which takes the object as the first parameter
• Then every call to a member function is just translated

to a normal function call.
• This means that member functions are NOT stored in

the object itself. So length() doesn’t change the
memory representation of Vector at all



13 / 41

Compound Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?



13 / 41

Compound Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?



13 / 41

Compound Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?



13 / 41

Compound Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?



13 / 41

Compound Types
const objects

1 struct Vector
2 {
3 double length()
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << v.length() << std::endl;
18 }

Works!

Compiler Error...

Why?



14 / 41

Compound Types

Let’s translate to our mental model



15 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees



15 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

What is the type of &v?



15 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

It is Vector const*



15 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

Which doesn’t match the parameter...



15 / 41

Compound Types
Mental Model

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector* this)
8 {
9 double x2 { this->x * this->x };
10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 std::cout << length(&v) << std::endl;
18 }

This is what the compiler sees

We need the parameter to take Vector const*



16 / 41

Compound Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

The code

Works!



16 / 41

Compound Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector const* this)
8 {
9 double x2 { this->x * this->x };

10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << length(&v) << endl;
18 }

The code The compilers view

Works!



16 / 41

Compound Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector const* this)
8 {
9 double x2 { this->x * this->x };

10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << length(&v) << endl;
18 }

The code The compilers view

Works!



16 / 41

Compound Types
Enter constmember functions!

1 struct Vector
2 {
3 double length() const
4 {
5 double x2 { x * x };
6 double y2 { y * y };
7 return std::sqrt(x2 + y2);
8 }
9
10 int x;
11 int y;
12 };
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << v.length() << endl;
18 }

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 double length(Vector const* this)
8 {
9 double x2 { this->x * this->x };

10 double y2 { this->y * this->y };
11 return std::sqrt(x2 + y2);
12 }
13
14 int main()
15 {
16 Vector const v { 1, 1 };
17 cout << length(&v) << endl;
18 }

The code The compilers view

Works!



17 / 41

Compound Types
Initialization

1 struct Vector
2 {
3 int x;
4 int y;
5 };
6
7 int main()
8 {
9 Vector v { };

10 }

x: ?

y: ?

Vector

v:



17 / 41

Compound Types
Initialization

1 struct Vector
2 {
3 int x { 1 };
4 int y { 0 };
5 };
6
7 int main()
8 {
9 Vector v { };

10 }

x: 1

y: 0

Vector

v:



17 / 41

Compound Types
Initialization

1 struct Vector
2 {
3 int x { 1 };
4 int y { 0 };
5 };
6
7 int main()
8 {
9 Vector v { 2, 3 };

10 }

x: 2

y: 3

Vector

v:



18 / 41

Compound Types
Initialization

• If we don’t explicitly initialize the data members they
will be undefined (in the first example)

• But we can give each data member a default value by
adding initialization to the data members (second
example)

• But we can always override the default if we explicitly
initialize the data members (third example)



19 / 41

Compound Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:



19 / 41

Compound Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:

Constructor



19 / 41

Compound Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:

Constructor call



19 / 41

Compound Types
Constructor

1 struct Vector
2 {
3 Vector(int value)
4 : x { value }, y { value }
5 {
6 }
7
8 int x;
9 int y;
10 };
11
12 int main()
13 {
14 Vector v { 5 };
15 }

x: 5

y: 5

Vector

v:

member initializer list



20 / 41

Compound Types
member initializer list

• Themember initializer list is a special syntax for
constructors

• It allows us to override the default initializers for data
members in a specific constructor call

• The member initializer list is a comma separated list of
initialization statements for all/any data members (see
example on previous slide)

• This is prefered over assignment (see next example)



21 / 41

Compound Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9 private:

10 int a;
11 int b;
12 };

Don’t write code like this...



21 / 41

Compound Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9 private:

10 int const a;
11 int b;
12 };

...It doesn’t work for const



21 / 41

Compound Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9 private:

10 int const a;
11 int b;
12 };

...It doesn’t work for const



21 / 41

Compound Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 {
6 a = c;
7 b = c + 1;
8 }
9 private:

10 int const a;
11 int b;
12 };

...It doesn’t work for const



22 / 41

Compound Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 : a { c },
6 b { c + 1 }
7 {
8 }
9 private:

10 int a;
11 int b;
12 };

Prefer this...



22 / 41

Compound Types
Member initializer list vs. assignment

1 class X
2 {
3 public:
4 X(int c)
5 : a { c },
6 b { c + 1 }
7 {
8 }
9 private:

10 int const a;
11 int b;
12 };

... It does work for const!



23 / 41

Compound Types
What will be printed?

1 class X
2 {
3 public:
4 void print(int&) { std::cout << "1"; }
5 void print(int const&) { std::cout << "2"; }
6 void print(int const&) const { std::cout << "3"; }
7 };
8
9 int main()
10 {
11 X x1 { };
12 X const x2 { };
13 int y1 { };
14 int const y2 { };
15
16 x1.print(y1);
17 x2.print(y1);
18 x1.print(y2);
19 x2.print(y2);
20 }



1 Compound Types
2 Operator Overloading
3 Value categories



25 / 41

Operator Overloading
Introduction

• A powerful aspect of C++ is the fact that we can define
operators for our own user‐defined types

• This allows us to greatly simplify how we use our
classes/structs (i.e. simplify the interface)

• This is called operator overloading
• If used correctly it will make our code easier to

understand by relating it to mathmatical notation
• BUT, if used incorrectly it will make our code harder to

understand, so we have to be careful...



26 / 41

Operator Overloading
Extending Vector

1 Vector v { 1, 2 };
2 Vector u { 3, 1 };
3
4 // This is our aim
5 Vector w { 3*v + u };
6
7 assert(w.x == 3*v.x + u.x);
8 assert(w.y == 3*v.y + u.y);



27 / 41

Operator Overloading
How it works

3*v + u



27 / 41

Operator Overloading
How it works

(3*v) + u



27 / 41

Operator Overloading
How it works

((3*v) + u)



27 / 41

Operator Overloading
How it works

operator+((3*v), u)



27 / 41

Operator Overloading
How it works

operator+(operator*(3, v), u)



28 / 41

Operator Overloading
How it works

• Whenever the compiler encounters an operator involving a class type it
knows that this must be an operator overload

• If it for example finds a+b then the compiler will translate it to a function
call

• Specifically, the compiler will call: operator+(a, b)
• Note that a is to the left of + so it will be the first parameter and b is to the

right so it is the second parameter.
• If operator+(a, b) doesn’t exist, then it will instead try

a.operator+(b)
• Note: If both versions exists then it is ambigious...
• Read more: https://en.cppreference.com/w/cpp/language/operators

https://en.cppreference.com/w/cpp/language/operators


29 / 41

Operator Overloading
When it works

1 // With operator overloads
2 5*(u + v) + w;
3
4 // Without
5 add(multiply(5, add(u, v)), w);

Which is easier to understand/read?



29 / 41

Operator Overloading
When it works

1 // With operator overloads
2 5*(u + v) + w;
3
4 // Without
5 add(multiply(5, add(u, v)), w);

Which is easier to understand/read?



30 / 41

Operator Overloading
When it doesn’t work...

u * v

Dot product?
Scalar product?

Element‐wise multiplication?



30 / 41

Operator Overloading
When it doesn’t work...

u * v
Dot product?

Scalar product?
Element‐wise multiplication?



30 / 41

Operator Overloading
When it doesn’t work...

u * v
Dot product?
Scalar product?

Element‐wise multiplication?



30 / 41

Operator Overloading
When it doesn’t work...

u * v
Dot product?
Scalar product?

Element‐wise multiplication?



31 / 41

Operator Overloading
When it doesn’t work...

• Lesson #1: Operator overloading only works if it is obvious
what it means.

• The example given on the previous slide multiplies a vector
with a vector

• But there are multiple ways to define “vector multiplication”
so it is not clear from just reading the code what is meant.

• This is bad, but accepted by the language.

• It is our job to carefully consider whether an operator
overload will lead to ambiguity or not...



32 / 41

Operator Overloading
When it doesn’t work...

1 Vector v { 1, 2 };
2 Vector u { 3, 1 };
3 Vector w { v + u };
4
5 // What do we expect to be printed?
6 cout << v.x << endl;



32 / 41

Operator Overloading
When it doesn’t work...

Compare with the int case



32 / 41

Operator Overloading
When it doesn’t work...

1 int v { 1 };
2 int u { 3 };
3 int w { v + u };
4
5 // Here we expect v to be unchanged
6 cout << v << endl;



32 / 41

Operator Overloading
When it doesn’t work...

1 Vector v { 1, 2 };
2 Vector u { 3, 1 };
3 Vector w { v + u };
4
5 // So here v.x should be unchanged
6 cout << v.x << endl;



33 / 41

Operator Overloading
When it doesn’t work...

• Lesson #2: Operators should have the expected behaviour
• This means that an operators semantics should be as similar to the

behaviour of corresponding operator on fundamental types
• On the previous slide we for example saw that operator+ should not

modify any of the operands.
• So before doing an operator overload, ask yourself whether it behaves the

same way as for the builtin types.
• Note: It is legal to break the semantics, but it is a very bad practice to do so.



34 / 41

Operator Overloading
Design principle

When overloading an operator make sure that:

• The behaviour is obvious and makes sense
• It is similar to the fundamental type operators



34 / 41

Operator Overloading
Design principle

When overloading an operator make sure that:
• The behaviour is obvious and makes sense

• It is similar to the fundamental type operators



34 / 41

Operator Overloading
Design principle

When overloading an operator make sure that:
• The behaviour is obvious and makes sense
• It is similar to the fundamental type operators



1 Compound Types
2 Operator Overloading
3 Value categories



36 / 41

Value categories
Assignments

1 int x { 3 };
2 x = 5; // OK
3 3 = 5; // NOT OK
4 x + 1 = 3; // NOT OK

... Why?



36 / 41

Value categories
Assignments

1 int x { 3 };
2 x = 5; // OK
3 3 = 5; // NOT OK
4 x + 1 = 3; // NOT OK

... Why?



37 / 41

Value categories
Assignments

• x is what is called an lvalue
• lvalues are expressions that refer to a specific

object/variable
• Whenever we use the expression x in a scope it will

always refer to the same object
• expressions such as 3, int{} and x+1 are rvalues
• rvalues are expressions that generate a new value

whenever it appears.



37 / 41

Value categories
Assignments

• Another way to differentiate between them is to think
about assignments (Note that these intutions aren’t
always correct).

• x is an lvalue (left‐hand‐side value) if it can appear on
left side of an assignment.

• x+1 is an rvalue (right‐hand‐side value) since it can
only appear on the right‐hand‐side of an assignment.



37 / 41

Value categories
Assignments

• If an object have identity, i.e. if there is a way for us to
refer to the object. Then every expression that refers to
that object will be an lvalue.

• For example: if there is a pointer to the object, if the
object is a variable or if it is a part of a bigger object
(like an array or a class).

• So things like: *ptr, array[0] etc. are also lvalues.
• rvalues are generally expressions that are not lvalues.



38 / 41

Value categories
lvalues & rvalues

lvalues

1 x
2 *ptr
3 array[0]
4 // etc.

rvalues

1 5
2 int{}
3 x + 1
4 // etc.



39 / 41

Value categories
What is the value category of the expression?

1 int const x { };
2 int zero()
3 {
4 return x;
5 }
6
7 zero() // <- what is the value category?



40 / 41

Value categories
What is the value category of the expression?

1 int array[3];
2
3 *(&array[0] + 1) // <- what is the value category?



41 / 41

Value categories
What is the value category of the expression?

1 int const x { };
2 int& zero()
3 {
4 return x;
5 }
6
7 zero() // <- what is the value category?



www.liu.se

www.liu.se

	Compound Types
	Operator Overloading
	Value categories

