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NOTE: This seminar covers seemingly basic stuff like data
types, functions and IO. However, it is still relevant even if
you think you already grasp everything, because here we
are not discussing the how of these things, but rather the
underlying reasons behind behaviours of C++ relating to
these concepts.
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Data Types
What is a data type?

• A data type is an abstraction.

• It represents an interpretation of raw data.

• Formally it is a set of functions, operations and restrictions that
relate to a piece of data.

• Data types are generally a tool for translating human ideas into
machine executable instructions via the compiler.
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Data Types
What is a data type?

These are bits. What do they mean?

1 0 0 1 0 0 1 1



5 / 36

Data Types
What is a data type?

Maybe it is an integer in base 2?

1 0 0 1 0 0 1 1

27 26 25 24 23 22 21 20



5 / 36

Data Types
What is a data type?

Maybe it is an integer in base 2?

1 0 0 1 0 0 1 1

27 26 25 24 23 22 21 20

128 + 16 + 2 + 1 = 147



5 / 36

Data Types
What is a data type?

Does it have a sign bit?

1 0 0 1 0 0 1 1

Sign

26 25 24 23 22 21 20



5 / 36

Data Types
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Does it have a sign bit?

1 0 0 1 0 0 1 1

Sign

26 25 24 23 22 21 20

(−1)1(16 + 2 + 1) = −19
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Data Types
What is a data type?

Maybe in reverse?

1 0 0 1 0 0 1 1

20 21 22 23 24 25 26 27

1 + 4 + 64 + 128 = 197
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Data Types
What is a data type?

Fractional?

1 0 0 1 0 0 1 1

Sign

23 22 21 20 2−1 2−2 2−3
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Data Types
What is a data type?

Fractional?

1 0 0 1 0 0 1 1

Sign

23 22 21 20 2−1 2−2 2−3

(−1)1(2 + 1
4
+ 1

8
) = 2.375
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Data Types
Why does it matter?

What the operation means depends on interpretation

1 0 0 1 0 0 1 1

0 1 0 0 1 1 0 1

+

=
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Data Types
Why does it matter?

Positive integers?

1 0 0 1 0 0 1 1

0 1 0 0 1 1 0 1

+

=

1 1 1 0 0 0 0 0

= 147

= 77

= 224
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Data Types
Why does it matter?

With sign bit?

1 0 0 1 0 0 1 1

0 1 0 0 1 1 0 1

+

=

0 0 1 1 1 0 1 0

= −19

= 77

= 58
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Data Types
Why does it matter?

Did you notice that the result differed?

1 0 0 1 0 0 1 1

0 1 0 0 1 1 0 1

+

=

0 0 1 1 1 0 1 0

= −19

= 77

= 58
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Data Types
Data type categories

• Fundamental types

• Integer types
• Floating point numbers
• Characters
• Booleans

• Enumeration types (enum)
• Compound types (Covered later)

• Pointers/reference
• Arrays
• Aggregate (struct)
• Classes (class)
• Unions (union)
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Data Types
Implementation‐defined behaviours

• How many bits in a byte?

≥ 8

• How many bits in an int?

≥ 16

• Is there a sign bit in int?

Probably not
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Data Types
Implementation‐defined behaviours

• How many bits in a byte? ≥ 8

• How many bits in an int? ≥ 16

• Is there a sign bit in int? Probably not
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Data Types
Implementation‐defined behaviours

• Different platforms have different properties which changes what is
and isn’t effective usage of memory

• Number of bits in a byte varies from system to system (mostly 8 on
modern hardware though, but older systems might still vary)

• On systems with more than 8 bits per byte, it would be wasteful
and inefficient to treat each byte as 8 just for simplicity.

• int is (informally) the most efficient integer representation

• On most modern systems 32‐bit integers are the most efficient, but
that is not true for all systems.

• There are many different ways to represent negative numbers: sign
bits, 1s and 2s complement etc.
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Data Types
Implementation‐defined behaviours

• C++ is designed to work and be efficient on any imaginable platform

• Standardizing certain properties would therefore be detrimental for
the overall usefulness of C++ on certain platforms

• Thus the standard lets the compiler/platform decide certain
properties (such as #bits in a byte, #bits in int, negative number
representation and many many more things)

• This means however that we should not assume these properties
when writing platform‐independent code.
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Data Types
Fixed width integers

• std::int32_t

• std::uint32_t
• std::uint_least32_t
• std::uint_fast32_t
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Data Types
Fixed width integers

• If you require a certain number of bits in your integers, you might
think that std::int32_t (or similar types) are good: but what if
the system have 36 bit bytes? Then there is no conceivable way to
use 32 bits efficiently (since we would have to slice away 4 bits).

• Therefore it is better to use the type std::int_least32_t,
since this guarantees at least 32 bits.

• There is also std::int_fast32_t which is the most efficient
integer that has at least 32 bits.

• The difference between std::int_leastN_t and
std::int_fastN_t is that std::int_leastN_t tries to be
as small as possible while std::int_fastN_t tries to be as fast
as possible.
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Data types
Enumeration types

• An enumeration type (enum) is a type with a discrete
set of named values.

• Each enum has an underlying integer representation,
where each named value is assigned a specific value.

• Whenever an enum value is referenced in your code,
the compiler translates that to the corresponding
integer value.
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Data types
Enumeration types

1 enum Direction
2 {
3 UNKNOWN, // = 0
4 NORTH, // = 1
5 EAST, // = 2
6 SOUTH, // = 3
7 WEST // = 4
8 };
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Data types
Enumeration types

1 enum Direction
2 {
3 UNKNOWN, // = 0
4 NORTH, // = 1
5 EAST, // = 2
6 SOUTH, // = 3
7 WEST // = 4
8 };

1 Direction dir { NORTH };
2 switch (dir)
3 {
4 case NORTH: /* ... */ break;
5 case EAST: /* ... */ break;
6 case SOUTH: /* ... */ break;
7 case WEST: /* ... */ break;
8 }

The code

This type of code is prefered!
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Data types
Enumeration types

1 enum Direction
2 {
3 UNKNOWN, // = 0
4 NORTH, // = 1
5 EAST, // = 2
6 SOUTH, // = 3
7 WEST // = 4
8 };

1 int dir { 1 };
2 switch (dir)
3 {
4 case 1: /* ... */ break;
5 case 2: /* ... */ break;
6 case 3: /* ... */ break;
7 case 4: /* ... */ break;
8 }

What the compiler sees

Don’t write code like this...
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Data Types
Basic compound types

1 int x { 3 };
2
3
4
5

x: 5
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2 int* ptr { &x };
3
4

x: 5

ptr:
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1 2 3array:



14 / 36

Data Types
Basic compound types

1 int x { 3 };
2 int* ptr { &x };
3 int array[3] { 1, 2, 3 };
4 int (*arrptr)[3] { &array };

x: 5

ptr:

1 2 3array:

arrptr:



14 / 36

Data Types
Basic compound types

1 int x { 3 };
2 int* ptr { &x };
3 int array[3] { 1, 2, 3 };
4 int* arrptr { &array[0] };

x: 5

ptr:

1 2 3array:

arrptr:
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Data Types
Basic compound types

• I am generally going to assume that you understand what a pointer is and
what a fixed‐size array is.

• If you don’t understand pointers, look at the slides linked under this
seminar on the course website.

• Here is a quick explanation of pointers: a pointer is the memory address of
the first byte in some piece of data of the specified type.

• A fixed‐size array is an array where the number of elements is 1) fixed (i.e. it
never changes) and 2) known during compilation (meaning the size can be
deduced without ever running the code).

• A pointer to an array is an address to the first byte in the first element of an
array. Arrays can be passed as a normal pointer to the first element, but
then we must also remember the size. With array‐pointers the compiler
remembers the size by embedding it into the type.
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Data types
CV‐qualifiers: const

A variable can generally be modified...

1 int var { 5 };
2 var = 7;
3 cout << var << endl;

OK!

Compile Error!
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Data types
CV‐qualifiers: const

But it does depend on the data type...

1 int var { 5 };
2 var = 7;
3 cout << var << endl;

OK!

Compile Error!
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Data types
CV‐qualifiers: const

A variable that is const cannot be modified...
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3 cout << var << endl;

OK!

Compile Error!
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Data types
CV‐qualifiers: const

constness is not a property of a variable, instead
it is a property of the data type...

1 int const var { 5 };
2 var = 7;
3 cout << var << endl;

OK!

Compile Error!
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Data types
CV‐qualifiers: const

Which means that const is a modifier that marks
the type as constant (unchanging)

1 int const var { 5 };
2 var = 7;
3 cout << var << endl;

OK!

Compile Error!
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Data types
CV‐qualifiers: const

This has the interesting side‐effect that for example
int and int const are two different data types.

1 int const var { 5 };
2 var = 7;
3 cout << var << endl;

OK!

Compile Error!
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Data types
CV‐qualifiers: volatile

Suppose we are on an embedded system where writing to the variable
displaymeans sending some data over a hardware bus to some other hard‐
ware component.

1 int display { }; // Direct bus access
2 for (int i { 0 }; i < 10; ++i)
3 {
4 display = i;
5 }
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Data types
CV‐qualifiers: volatile

Then this code might cause a problem if we enable optimizations for our com‐
pilation...

1 int display { }; // Direct bus access
2 for (int i { 0 }; i < 10; ++i)
3 {
4 display = i;
5 }
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Data types
CV‐qualifiers: volatile

In particular, what will happen is that the compiler notices that we write a lot to
display, however we never once read from it. So from the point‐of‐view of
the compiler this variable is unnecessary. Meaning the compiler will completely
remove all writes to it.

1 int display { }; // Direct bus access
2 for (int i { 0 }; i < 10; ++i)
3 {
4 display = i;
5 }
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Data types
CV‐qualifiers: volatile

This happens because the compiler is not aware of the fact that writing to
display causes side‐effects outside of the program (i.e. that the hardware
is listening to that specific variable)

1 int display { }; // Direct bus access
2 for (int i { 0 }; i < 10; ++i)
3 {
4 display = i;
5 }
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Data types
CV‐qualifiers: volatile

But this does NOT happen if we add volatile to the variables type.

1 int volatile display { }; // Direct bus access
2 for (int i { 0 }; i < 10; ++i)
3 {
4 display = i;
5 }
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Data types
CV‐qualifiers: volatile

volatile tells the compiler that writing and reading values of this type have
side‐effects that the compiler is unaware of, meaning the optimizer cannot as‐
sume that the variable is unnecessary.

1 int volatile display { }; // Direct bus access
2 for (int i { 0 }; i < 10; ++i)
3 {
4 display = i;
5 }
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Data types
CV‐qualifiers

Both const and volatile are modifiers to data types
that changes the type

CV‐qualifiers = const‐volatile qualifiers
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Data types
CV‐qualifiers

Conceptually they are different, but syntactically theywork
exactly the same way

CV‐qualifiers = const‐volatile qualifiers
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Data types
CV‐qualifiers

Because of this they are bundled together as CV‐qualifiers

CV‐qualifiers = const‐volatile qualifiers
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Data types
CV‐qualifiers

volatile is NOT relevant for this course, so when we
speak of CV‐qualifiers we are mainly discussing const,
but remember that all syntax rules for const also applies
to volatile

CV‐qualifiers = const‐volatile qualifiers
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Data types
CV‐qualifiers

Rule of thumb: CV‐qualifiers applies to the left:

int const
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Data types
CV‐qualifiers

... except when there is nothing to the left:

const int
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Data types
CV‐qualifiers

This is relevant for more complicated type declarations:

int const * const
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This is relevant for more complicated type declarations:

int const * const

... to a constant int!
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Data types
CV‐qualifiers

In comparison to:

const int * const
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Data types
CV‐qualifiers

In comparison to:

const int * const

... to a constant int?
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Data types
CV‐qualifiers

Conclusion: Always put const to the right of whatever you
want it to apply to, this way it is easier to understand!
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Functions
Anatomy of functions

1 // signature / declaration
2 int fun(int a, int b);
3
4 // implementation / definition
5 int fun(int a, int b)
6 {
7 // ...
8 }
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Functions
Anatomy of functions

• A function has a list of parameters and a return type.
• The function signature is defined by the function name,

the list of parameters and the return type.
• A function can be declared by writing the signature

only, and then defined later.
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Functions
Function overloads

1 int fun(int a); // #1
2 int fun(int a, int b); // #2
3 int fun(float a, int b); // #3
4 int fun(float a); // #4

which version?

1
2
3
4
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Functions
Function overloads

1 int fun(int a); // #1
2 int fun(int a, int b); // #2
3 int fun(float a, int b); // #3
4 int fun(float a); // #4

which version?

1 fun(0); // #1
2 fun(0.0f, 0); // #3
3 fun(0, 0); // #2
4 fun(0.0f, 0.0f); // #3
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Functions
Function overloads

• C++ allows for many functions with the same name, as long as the
parameter list differs. Specifically the number of parameters and/or the
types of the parameters must be different between each overload.

• When a function is called, the compiler retrieves a list of all functions with
corresponding name, and then it compares the arguments passed to the
function call with the declared parameters of the function signature.

• If the compiler finds an overload that matches the function call exactly then
it simply calls that function.

• But there might be a situation (as seen is the example) where the number
of parameters matches an overload, but the types does not.
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Functions
Function overloads

• How should the language/compiler handle this?
• One idea is to simply forbid calling functions that doesn’t match exactly.
• This idea does have some major drawbacks. Suppose that we have a

function called fun() with signature void fun(unsigned x), and
we call it as fun(0) then this wouldn’t compile since 0 has data type int
which doesn’t match the parameter exactly.

• Another, worse example, would be if the function has signature
void fun(int const x) then fun(0) also wouldn’t work, since
int and int const are different (highly compatible) data types.
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Functions
Function overloads

• We could of course make special exceptions for const types and different
integer types, but then we run into similar problems for other types.

• A string literal, e.g. "a string" has data type char const*, so we
cannot pass it to a function that takes a std::string etc.

• C++ has a guiding principle which states that no types should have hidden
favors from the compiler. Therefore we cannot allow for these types of
special cases for specific types determined by the compiler.

• So the only reasonable thing to do here is to allow calling functions with
slight variations in the parameter data types.
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Functions
Function overloads

• So what should we do in that case?
• Well, if a value of type A can be converted into a value of type B, then that

should be allowed.
• However, the compiler should only do this if no exact match exists.
• The final call in the previous code example matches both overload #2 and

#3, which one should it pick?
• We could of course forbid this, but then the previous problems discussed

arises again.
• Therefore the language instead states that in those cases it should match

the overload that requires the fewest conversions.
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Functions
Calling overloads

1. Exact match?

2. Convert one parameter?

3. Convert two parameters?

4. ...
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Functions
Implicit conversion

• Promotion
• Narrowing
• Numeric
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Functions
Implicit conversion

• The compiler is allowed to do a promotion of a data type, meaning convert
it into the same category of values but with a bigger value range. For
example converting short int to int, or int to long int. Note that
float to double would also be a promotion.

• Narrowing conversions are often permitted, but commonly the compiler
produces a warning if that happens. A narrowing conversion is the opposite
of a promotion (reducing the value range).

• It is also permitted to convert between integers and floating point numbers.
This is called numeric conversions.
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Functions
Circular dependent functions: Problem

1
2
3
4 bool even(unsigned value)
5 {
6 if (value == 0) return true;
7 return odd(value - 1);
8 }
9
10 bool odd(unsigned value)
11 {
12 if (value == 0) return false;
13 return even(value - 1);
14 }
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Functions
Circular dependent functions: Solution

1 bool even(unsigned value);
2 bool odd(unsigned value);
3
4 bool even(unsigned value)
5 {
6 if (value == 0) return true;
7 return odd(value - 1);
8 }
9
10 bool odd(unsigned value)
11 {
12 if (value == 0) return false;
13 return even(value - 1);
14 }
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Functions
Circular dependent functions

• C++ is designed to work with a one‐pass compiler, i.e. it should be
possible to process and compile a piece of code once going
line‐by‐line.

• A one‐pass compiler could not possibly figure out which function to
call at line 7, since it hasn’t yet seen the signature of odd().

• One possible design of this would be to allow the compiler to
generate a function signature based on the surrounding context.
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Functions
Circular dependent functions

• Figuring out the return type isn’t always possible from context, so
how should that be handled?

• Any typos in function names would silently produce a new function
signature instead of producing an error directly, which would –
potentially – lead to harder to understand errors.

• How do we handle the case when we are calling a non‐existing
function overload? Should it produce a new overload which
potentially isn’t implemented? Should it perform implicit type
conversions to match an existing overload? This means that we
would have to define when it is allowed to use a previously defined
function with mismatching parameters types and when a new
signature should be produced. This runs the risk of producing
non‐intuitive behaviours.

• Therefore the easiest and most intuitive design is to simply forbid
calling functions that are not yet known.
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Functions
Circular dependent functions

• But this runs a different problem, which is seen in the previous
code example: if there are two functions who depend on each
other we cannot possibly define them both before calling them.

• The solution is quite simple: allow the user to declare the functions
before defining them, thus telling the compiler all the necessary
information for implementing a function call.
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3 IO



32 / 36

IO
Basic IO stuff

1 #include <iostream>
2
3
4 int main()
5 {
6 int x;
7 int y;
8
9 std::cin >> x >> y;

10 std::cout << "x + y = " << x + y << std::endl;
11 }
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IO
But why?

• C uses functions printf() and scanf() which takes, as a first
parameter, a so‐called format string, and the remaining parameters are
printed based on the format string. For example:
printf("x + y = %d\n", x + y);
where %d specifies that the first argument (in this case) is printed as a
decimal (base‐10) integer.

• This style is fairly simple but requires you, the programmer, to know the
string specification for each parameter you pass. How do you print a string?
You use %s. How do you print an integer as a hexadecimal? %x. How do
you print an unsigned integer in base 10? %u, and so on.

• The function also blindly trusts your specified type. If you say you want to
print a string, but then pass an integer it is going to try to print the integer
bits as if they were a string. This will probably cause huge issues.
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But why?

• This is especially egregious since the data types are supposed to handle this
properly as part of the language design.

• In essence what this design we ignore the data types entirely and let the
user act as to how different data types are printed.

• This will cause major technical debt if we for example need to change the
type of some variables.
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But why?

• C++ introduced the concept of function overloading.
• With this a new design could be implemented which was driven by the

types of the variables rather than what the user specified.
• It would for example be designed something like this:

1 write(std::cout, "x + y = ");
2 write(std::cout, x + y);
3 write(std::cout, "\n");

Where there is an overload of the write() function for different types.
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But why?

• However, this is quite cluttered and there is a lot of boilerplate code having
to be written. The dream is to be able to put everything on one line.

• In modern C++ this can easily be solved using techniques from C++11 and
onwards. But the IO library was written way before those features.

• Because of this, the compromise was to use operator overloading (which
we will talk about in the next seminar) to make a usable interface that was
also type safe (i.e. how things are printed are based on the data type).

• In C++23 they finally began working on fixing and modernizing the IO
features of C++ (see next slide).

• There are however other benefits with the old way compared to the
modern alternatives, but these benefits will be revealed later on.
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C++23

1 #include <iostream>
2 #include <print>
3
4 int main()
5 {
6 int x;
7 int y;
8
9 std::cin >> x >> y;

10 std::println("x + y = {}", x + y);
11 }
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Buffered

program

cout << ...

cin >> ...
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Buffered

• One important aspect of the C++ streams is that they
are buffered

• This means that they do not read or write directly from
the terminal

• Instead they store data in an intermediate buffer which
are flushed at appropriate times

• This is done to reduce the number of context switches
needed
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