
Multithreading in C++11
Threads, mutual exclusion and waiting

Klas Arvidsson

Software and systems (SaS)
Department of Computer and Information Science
Linköping University

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

3 / 49

std::thread
Functions passed to threads execute concurrently. Executionmay be time-shared,
simultaneous or both.

Constructor:
template< class Function, class... Args >
explicit thread(Function&& f, Args&&... args);

Selected members:
void join();
void detach();
bool joinable() const;
std::thread::id get_id() const;
static unsigned hardware_concurrency();

4 / 49

Example: receptionist and visitor
Thread function implementation

void receptionist(string name)
{

cout << name << ": Welcome, how can I help you?" << endl;
cout << name << ": Please enter, he's expecting you." << endl;

}

class Visitor
{
public:

Visitor(string const& n) : name{n} {}
void operator()() const
{

cout << name << ": Hi, I'm here to meet Mr X" << endl;
cout << name << ": Thank you" << endl;

}
private:

string name;
};

5 / 49

Example: receptionist and visitor
Thread creation

#include <iostream>
#include <thread>
#include <chrono> // time constants

using namespace std;
using namespace std::chrono_literals; // time constants

int main()
{

thread r{receptionist, "R"s};
thread v{Visitor{"V"s}};
thread f{[](){ cout << "F: Hi!" << endl; }};

v.join(); // will wait for thread v to complete
r.detach(); // makes you responsible ...

// f.detach(); // terminate due to f not join'ed or detach'ed

cout << "Main sleep" << endl;
this_thread::sleep_for(2s); // pause main thread for 2 seconds
cout << "Main done" << endl;

}

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

7 / 49

std::mutex
A basic building block for mutual exclusion. Variants include std::timed_mutex,
std::recursive_mutex and (C++17) std::shared_mutex

Constructor:
constexpr mutex();
mutex(const mutex&) = delete; // and also operator=

Selected members:
void lock();
bool try_lock();
void unlock();

8 / 49

std::shared_mutex (C++17)
A basic building block for mutual exclusion facilitating shared access to the re-
source. Shared access is commonly used for reading.

Constructor:
constexpr shared_mutex();
shared_mutex(const shared_mutex&) = delete; // and also operator=

Selected members:
void lock();
bool try_lock();
void unlock();

void lock_shared();
bool try_lock_shared();
void unlock_shared();

9 / 49

std::lock_guard
Provides convenient RAII-style unlocking. Locks at construction and unlocks at
destruction.

Constructor:
explicit lock_guard(mutex_type& m);
lock_guard(mutex_type& m, std::adopt_lock_t t);
lock_guard(const lock_guard&) = delete; // and also operator=

10 / 49

std::unique_lock (C++11), std::shared_lock (C++14
Lock wrappers for movable ownership. An unique lock is required for use with
std::condition_variable.

Features:
unique_lock();
unique_lock(unique_lock&& other);
explicit unique_lock(mutex_type& m);
unique_lock& operator=(unique_lock&& other);

shared_lock();
shared_lock(shared_lock&& other);
explicit shared_lock(mutex_type& m);
shared_lock& operator=(shared_lock&& other);

11 / 49

std::scoped_lock (C++17)
It locks all provided locks using a deadlock avoidance algorithmandwith RAII-style
unlocking.

Constructor:
explicit scoped_lock(MutexTypes&... m);
scoped_lock(MutexTypes&... m, std::adopt_lock_t t);
scoped_lock(const scoped_lock&) = delete;

12 / 49

std::lock (C++11)
Function to lock all provided locks using a deadlock avoidance.

Use std::scoped_lock with std::adopt_lock on
every lock after call to std::lock to get RAII-style
unlocking.

template< class Lockable1, class Lockable2, class... LockableN >
void lock(Lockable1& lock1, Lockable2& lock2, LockableN&... lockn);

13 / 49

Example: Passing a mutex as reference parameter
Declaration and argument

int main()
{

// Note: cout is thread safe on character level
mutex cout_mutex;

// references parameters have to be specified explicitly
thread r(receptionist, ref(cout_mutex));
thread v(Visitor{cout_mutex});

r.join();
v.join();

cout << "Main done" << endl;

return 0;
}

14 / 49

Example: Passing a mutex as reference parameter
Locking and unlocking

void receptionist(mutex& cout_mutex)
{

cout_mutex.lock();
cout << "R: Welcome, how can I help you?" << endl;
cout_mutex.unlock();

this_thread::yield(); // let other thread run

lock_guard<mutex> lock(cout_mutex); // destructor auto unlock
cout << "R: Please enter, he's expecting you." << endl;

}

15 / 49

Example: Passing a mutex as reference parameter
Using lock_guard for automatic unlock

class Visitor
{
public:

Visitor(mutex& cm) : cout_mutex{cm} {}

void operator()()
{

cout_mutex.lock();
cout << "V: Hi, I'm here to meet Mr X" << endl;
cout_mutex.unlock();

this_thread::yield(); // let other thread run

lock_guard<mutex> lock(cout_mutex); // destructor auto unlock
cout << "V: Thank you" << endl;

}
private:

mutex& cout_mutex;
};

16 / 49

Example: Separate block for std::lock_guard region
Using a separate block highlights the critical section

// some function
{

foo();

// critical section
{

lock_guard<mutex> lock(cout_mutex);
cout << "After foo() but before bar()" << endl;

}

bar();
}

17 / 49

Example: Threads sharing cout
Each thread will print one line of text.

#include <iostream>
#include <vector>
#include <chrono>

#include <thread>
#include <mutex>

using namespace std;
using namespace std::chrono_literals;

int main()
{

vector<string> v
{

"This line is not written in gibberish",
"We want every line to be perfectly readable",
"The quick brown fox jumps over lazy dog",
"Lorem ipsum dolor sit amet"

};
mutex cout_mutex;

18 / 49

Example: Threads sharing cout
Thread implementation.

auto printer = [&](int i)
{

string const& str = v.at(i);

for (int j{}; j < 100; ++j)
{

// lock_guard<mutex> lock(cout_mutex);
for (unsigned l{}; l < str.size(); ++l)
{

cout << str.at(l);
this_thread::sleep_for(1us);

}
cout << endl;

}
};

19 / 49

Example: Threads sharing cout
Starting and joining our threads.

vector<thread> pool;
for (unsigned i{}; i < v.size(); ++i)
{

pool.emplace_back(printer, i);
}

for (auto && t : pool)
{

t.join();
}
cout << "Main done" << endl;

return 0;
}

20 / 49

Example: Potential deadlock
Thread function

void deadlock(mutex& x, mutex& y)
{

auto id = this_thread::get_id();

lock_guard<mutex> lgx{x};
cout << id << ": Have lock " << &x << endl;

this_thread::yield(); // try to get bad luck here

lock_guard<mutex> lgy{y};
cout << id << ": Have lock " << &y << endl;

cout << id << ": Doing stuff requiring both locks" << endl;
}

21 / 49

Example: Potential deadlock
Main: starting and joining our threads

int main()
{

mutex A;
mutex B;

// references parameters have to be specified explicitly
thread AB{deadlock, ref(A), ref(B)};
thread BA{deadlock, ref(B), ref(A)};

AB.join();
BA.join();

cout << "Main done" << endl;

return 0;
}

22 / 49

Example: Potential deadlock
Deadlock avoidance

void no_deadlock(mutex& x, mutex& y)
{

auto id = this_thread::get_id();

// C++11, take locks
lock(x, y);
// And arrange for automatic unlocking
lock_guard<mutex> lgx{x, adopt_lock};
lock_guard<mutex> lgy{y, adopt_lock};

// C++17
// scoped_lock lock{x, y};
cout << id << ": Have lock " << &x << " and " << &y << endl;

cout << id << ": Doing stuff requiring both locks" << endl;
}

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

24 / 49

std::promise
Promise to deliver communication (or be done) in the future.

Constructor:
promise();
promise(promise&& other);
promise(const promise& other) = delete;

Selected members:
std::future<T> get_future();
void set_value(const R& value);
void set_value();
void set_exception(std::exception_ptr p);

25 / 49

std::future
Waits for a promise to be fulfilled.

Constructor:
future();
future(future&& other);
future(const future& other) = delete;

Selected members:
T get();
void wait() const;

26 / 49

Example: Using promise and future
Create promises and futures and move them

int main()
{

promise<void> say_welcome;
promise<string> say_errand;
promise<void> reply;

// You have to get the futures before you move the promise
future<void> get_welcome = say_welcome.get_future();
future<string> get_errand = say_errand.get_future();
future<void> get_reply = reply.get_future();

// You have to move promises and futures into the threads
thread r(receptionist, move(say_welcome), move(get_errand), move(reply));
thread v(visitor, move(get_welcome), move(say_errand), move(get_reply));

// Wait for both threads to finish before continuing
r.join();
v.join();

cout << "Main done" << endl;
}

27 / 49

Example: Using promise and future
Fulfill promise and wait for future

void receptionist(promise<void> say_welcome, future<string> errand,
promise<void> reply)

{
cout << "R: Welcome, how can I help you?" << endl;
say_welcome.set_value();

string name = errand.get();
cout << "R: Please enter, " << name << " is expecting you." << endl;
reply.set_value();

}

void visitor(future<void> get_welcome, promise<string> tell_errand,
future<void> get_reply)

{
string name{"Mr X"};
get_welcome.wait();
cout << "V: Hi, I'm here to meet " << name << endl;
tell_errand.set_value(name);
get_reply.wait();
cout << "V: Thank you" << endl;

}

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

29 / 49

std::condition_variable
Provides a way to wait for changes of a shared resource without blocking the re-
source lock.

Constructor:
condition_variable();

Selected members:
void notify_one();
void notify_all();
void wait(std::unique_lock<std::mutex>& lock);

template< class Predicate >
void wait(std::unique_lock<std::mutex>& lock, Predicate pred);

30 / 49

Example: Using a condition variable
Our worker thread

void worker(mt19937& die, int& done, mutex& m, condition_variable& change)
{

uniform_int_distribution <int> roll(1,6);

// just pretend to do some work...
for (int i{}; i < 100; ++i)
{

int n{roll(die)};
for (int j{}; j < n; ++j)

this_thread::sleep_for(1ms);

lock_guard<mutex> lock(cout_mutex);
cout << this_thread::get_id()

<< " iteration " << i
<< " slept for " << n << endl;

}
// message main thread that this thread is done
unique_lock<mutex> done_mutex{m};
--done;
change.notify_one();

}

31 / 49

Example: Using a condition variable
Main: creating and detaching threads

int main()
{

const int N{10};
int done{N};
random_device rdev;
mt19937 die(rdev());

mutex base_mutex{};
condition_variable cond_change{};

for (int i{}; i < N; ++i)
{

// if we do not need to keep track of threads we
// can create and detach threads immediately
thread(worker,

ref(die),
ref(done),
ref(base_mutex),
ref(cond_change)).detach();

}

32 / 49

Example: using a condition variable
Main: finish when every thread is done

// conditions require a std::unique_lock
unique_lock<mutex> done_mutex{base_mutex};
while (done > 0)
{

cout_mutex.lock();
cout << "Main: still threads running!" << endl;
cout_mutex.unlock();

// we are holding the done_mutex and need to wait for another
// thread to update the variable, but that thread can not lock the
// done_mutex while we're holding it... condition_variables solve
// this problem efficiently
cond_change.wait(done_mutex);

}
done_mutex.unlock();

// an option that would achieve the same as the loop above is to
// keep track of all started threads in a vector and join them
cout << "Main done" << endl;

}

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

34 / 49

std::packaged_task
Couple a task to deliver its result through a future, preparing it for asynchronous
execution.

Class and constructor (compare to std::function):
template< class R, class ...Args >
class packaged_task<R(Args...)>;

template <class F>
explicit packaged_task(F&& f);

Selected members:
std::future<R> get_future();

void operator()(ArgTypes... args);

35 / 49

Example: Using a packaged task, setup

#include <iostream>
#include <vector>
#include <numeric>
#include <future>

#include "divider.h"

using namespace std;

using data = vector<int>;
using data_it = data::iterator;

int main()
{

const auto thread_count{9};

vector<int> v(100000000, 1);
Divider<vector<int>> d{v, thread_count};

36 / 49

Example: Using a packaged task, divide work

vector<future<int>> partial_results;
for (unsigned i{}; i < thread_count; ++i)
{

// wrap our function in a future-aware object
packaged_task<int(data_it, data_it, int)> worker(accumulate<data_it,int>);

// get a handle to out future result
partial_results.emplace_back(worker.get_future());

// execute our function in it's own thread
thread{ move(worker), d.begin(i), d.end(i), 0 }.detach();

}

37 / 49

Example: Using a packaged task, fetch results

cout << "Sum: "
<< accumulate(begin(partial_results), end(partial_results), 0,

[](int sum, future<int>& fut){ return sum + fut.get(); })
<< endl;

return 0;
}

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

39 / 49

std::async
Prepare a function for asynchronous execution.

Function template:
template< class Function, class... Args >
// return type
std::future<std::invoke_result_t<std::decay_t<Function>, std::decay_t<Args>...>>
// function and arguments
async(std::launch policy, Function&& f, Args&&... args);

Policies:
std::launch::async enable asynchronous evaluation
std::launch::deferred enable lazy evaluation

40 / 49

Example: Using async, setup same as before

#include <iostream>
#include <vector>
#include <numeric>
#include <future>

#include "divider.h"

using namespace std;

using data = vector<int>;
using data_it = data::iterator;

int main()
{

const auto thread_count{9};

vector<int> v(100000000, 1);
Divider<vector<int>> d{v, thread_count};

41 / 49

Example: Using async, divide work

vector<future<int>> partial_results;
for (unsigned i{}; i < thread_count; ++i)
{

partial_results.emplace_back(
// execute our function in it's own thread an get a handle to the future result
// Note: always specify launch::async to avoid launch::deferred execution
async<int(data_it, data_it, int)>(launch::async,

accumulate, d.begin(i), d.end(i), 0)
);

}

42 / 49

Example: Using async, fetch results same as before

cout << "Sum: "
<< accumulate(begin(partial_results), end(partial_results), 0,

[](int sum, future<int>& fut){ return sum + fut.get(); })
<< endl;

return 0;
}

1 Thread creation
2 Mutual exclusion
3 Futures
4 Condition variables
5 Packaged Task
6 Async
7 Execution policy

44 / 49

std::execution
Execution policies let us specify sequential or parallell algorithm execution.

namespace execution {

class sequenced_policy;
class parallel_policy;

// execution policy objects:
inline constexpr sequenced_policy seq{ /*unspecified*/ };
inline constexpr parallel_policy par{ /*unspecified*/ };
inline constexpr parallel_unsequenced_policy par_unseq{ /*unspecified*/ };
}

Algorithm specification example:
template< class ExecutionPolicy, class RndIt, class Cmp >
void sort(ExecutionPolicy&& policy, RndIt first, RndIt last, Cmp comp);

template< class ExecutionPolicy, class FwdIt, class UnaryFunc2 >
void for_each(ExecutionPolicy&& policy, FwdIt f, FwdIt l, UnaryFunc2 f);

45 / 49

Example: Accumulate a vector, compare to previous

#include <iostream>
#include <vector>
#include <numeric>

using namespace std;

using data = vector<int>;
using data_it = data::iterator;

int main()
{

vector<int> v(100000000, 1);

cout << "Sum: "
<< reduce(execution::par, begin(v), end(v), 0);
<< endl;

return 0;
}

46 / 49

Example: Print independent vector values
Program template

#include <iostream>
#include <iomanip>
#include <vector>
#include <numeric> // <<-- iota
#include <algorithm>
#include <thread>
//#include <execution> // <<-- execution policies

using namespace std;

int main()
{

vector<int> v(70);
iota(begin(v), end(v), 1);

47 / 49

Example: Print independent vector values
Sequential execution policy

for_each(/*execution::seq,*/ begin(v), end(v), [](int i) {
cout << setw(i) << 's' << endl;

});

48 / 49

Example: Print independent vector values
Manual thread creation (for comparision)

const auto thread_count{4};
const auto size = v.size();
const auto chunk_size{ size/thread_count };
const auto remainder{ size%thread_count };

vector<thread> t;
auto b{ begin(v) };
for (unsigned i{}; i < thread_count; ++i)
{

auto e{ next(b, chunk_size + (i < remainder)) };
t.emplace_back([](auto start, auto end){

for (auto i{start}; i < end; ++i)
cout << setw(*i) << '\\' << endl;

}, b, e);
b = e;

}

for (auto && i : t)
i.join();

49 / 49

Example: Print independent vector values
Parallell execution policy

Specified in C++17, but gcc support is still(2017-12-04)
missing.

for_each(/*execution::par,*/ begin(v), end(v), [](int i) {
cout << setw(i) << 'p' << endl;

});

www.liu.se

www.liu.se

	Thread creation
	Mutual exclusion
	Futures
	Condition variables
	Packaged Task
	Async
	Execution policy

