Multithreading in C++11

Threads, mutual exclusion and waiting

Klas Arvidsson

Software and systems (SaS)
Department of Computer and Information Science

Linképing University

II LINKOPING
o UNIVERSITY

Thread creation
Mutual exclusion
Futures

Condition variables
Packaged Task
Async

Execution policy

NOoO OO —

II LINKOPING
o UNIVERSITY

1 Thread creation

II LINKOPING
o UNIVERSITY

3/49

std:thread

Functions passed to threads execute concurrently. Execution may be time-shared,
simultaneous or both.

Constructor:
template< class Function, class... Args >
explicit thread(Function&& f, Args&&... args);

Selected members:

void join();

void detach();

bool joinable() const;

std::thread::id get_id() const;

static unsigned hardware_concurrency();

II LINKOPING
@ UNIVERSITY

Example: receptionist and visitor

Thread function implementation

void receptionist(string name)

{
cout << name << ": Welcome, how can I help you?"
cout << name << ": Please enter, he's expecting

<< endl;
you." << endl;

class Visitor

{
public:
Visitor(string const& n) : name{n} {}
void operator () () const
{
cout << name << ": Hi, I'm here to meet Mr X"
cout << name << ": Thank you" << endl;
private:

string name;

H

<< endl;

4/49

LINKOPING
@ UNIVERSITY

Example: receptionist and visitor

Thread creation

#include <iostream>
#include <thread>
#include <chrono>

using namespace std;
using namespace std::chrono_literals;

int main()

{
thread r{receptionist, "R"s};
thread v{Visitor{"V"sl}};
thread f{[J(){ cout << "F: Hi!" << endl; 1}};
v.join();
r.detach();
cout << "Main sleep" << endl;
this_thread::sleep_for(2s);
cout << "Main done" << endl;
2

5/49

LINKOPING
UNIVERSITY

2 Mutual exclusion

II LINKOPING
o UNIVERSITY

std::mutex

A basic building block for mutual exclusion. Variants include std::timed_mutex,

std::recursive_mutex and (C++17) std::shared_mutex

Constructor:

constexpr mutex();
mutex(const mutex&) =

delete;

Selected members:

void lock();
bool try_lock();
void unlock();

7149

LINKOPING
UNIVERSITY

8/49

std::shared_mutex (C++17)

A basic building block for mutual exclusion facilitating shared access to the re-
source. Shared access is commonly used for reading.

Constructor:

constexpr shared_mutex();
shared_mutex(const shared_mutex&) = delete;

Selected members:

void lock();
bool try_lock();
void unlock();

void lock_shared();
bool try_lock_shared();
void unlock_shared();

II LINKOPING
@ UNIVERSITY

9/49

std::lock_guard

Provides convenient RAII-style unlocking. Locks at construction and unlocks at
destruction.

Constructor:

explicit lock_guard(mutex_type& m);
lock_guard(mutex_type& m, std::adopt_lock_t t);
lock_guard(const lock_guard&) = delete;

II LINKOPING
@ UNIVERSITY

10/49

std::.unique_lock (C++11), std::shared_lock (C++14

Lock wrappers for movable ownership. An unique lock is required for use with
std::condition_variable.

Features:

unique_lock();

unique_lock(unique_lock&& other);

explicit unique_lock(mutex_type& m);
unique_lock& operator=(unique_lock&& other);

shared_lock ();

shared_lock(shared_lock&& other);

explicit shared_lock(mutex_type& m);
shared_lock& operator=(shared_lock&& other);

II LINKOPING
@ UNIVERSITY

1/49

std::scoped_lock (C++17)

It locks all provided locks using a deadlock avoidance algorithm and with RAII-style
unlocking.

Constructor:
explicit scoped_lock(MutexTypes&... m);
scoped_lock(MutexTypes&... m, std::adopt_lock_t t);
scoped_lock(const scoped_lock&) = delete;

II LINKOPING
@ UNIVERSITY

12/49

std::lock (C++11)

Function to lock all provided locks using a deadlock avoidance.

Use std: :scoped_lock with std: :adopt_lock on
every lock after call to std: : 1ock to get RAII-style
unlocking.

template< class Lockablel, class Lockable2, class... LockableN >
void lock(Lockablel& lockl, Lockable2& lock2, LockableN&... lockn);

II LINKOPING
@ UNIVERSITY

13/49

Example: Passing a mutex as reference parameter

Declaration and argument

int main()

{
mutex cout_mutex;
thread r(receptionist, ref(cout_mutex));
thread v(Visitor{cout_mutex});

r.join();
v.join();

cout << "Main done" << endl;

return O;

II LINKOPING
@ UNIVERSITY

14749

Example: Passing a mutex as reference parameter

Locking and unlocking

void receptionist(mutex& cout_mutex)
cout_mutex.lock();
cout << "R: Welcome, how can I help you?" << endl;
cout_mutex.unlock();

this_thread::yield();

lock_guard<mutex> lock(cout_mutex);
cout << "R: Please enter, he's expecting you." << endl;

II LINKOPING
@ UNIVERSITY

15/49

Example: Passing a mutex as reference parameter

Using lock_guard for automatic unlock

class Visitor

public:
Visitor (mutex& cm) : cout_mutex{cm} {}

void operator () ()

{
cout_mutex.lock();
cout << "V: Hi, I'm here to meet Mr X" << endl;
cout_mutex.unlock();

this_thread::yield();

lock_guard<mutex> lock(cout_mutex);
cout << "V: Thank you" << endl;
}
private:
mutex& cout_mutex;

8

II LINKOPING
@ UNIVERSITY

16/49

Example: Separate block for std::lock_guard region

Using a separate block highlights the critical section

foo();

{

lock_guard<mutex> lock(cout_mutex);

cout << "After foo() but before bar()" << endl;
}

bar () ;

LINKOPING
II.“ UNIVERSITY

Example: Threads sharing cout

Each thread will print one line of text.

#include
#include
#include

#include
#include

using nam

using namespace std::chrono_literals;

int main(
{
vector<

{

"This line is not written in gibberish",
"We want every line to be perfectly readable",
"The quick brown fox jumps over lazy dog",

<iostream>
<vector>
<chrono>

<thread>
<mutex>

espace std;

)

string> v

"Lorem ipsum dolor sit amet"

b8

mutex c

out_mutex;

17149

LINKOPING

UNIVERSITY

18/49

Example: Threads sharing cout

Thread implementation.

auto printer = [&](int i)
{

string const& str = v.at(i);

for (int j{}; j < 100; ++j)
{

for (unsigned 1{}; 1 < str.size(); ++1)

{
cout << str.at(l);
this_thread::sleep_for(lus);

}

cout << endl;

}
};

II LINKOPING
@ UNIVERSITY

19/49

Example: Threads sharing cout

Starting and joining our threads.

vector<thread> pool;
for (unsigned i{}; i < v.size(); ++i)

{
pool.emplace_back(printer, i);
}
for (auto && t : pool)
{
t.join();

cout << "Main done" << endl;

return O;

II LINKOPING
@ UNIVERSITY

20/49

Example: Potential deadlock

Thread function

void deadlock(mutex& x, mutex& y)
{
auto id = this_thread::get_id();
lock_guard<mutex> lgx{x};
cout << id << ": Have lock " << &x << endl;
this_thread::yield();
lock_guard<mutex> lgy{y};
cout << id << ": Have lock " << &y << endl;
cout << id << ": Doing stuff requiring both locks" << endl;
¥
LINKOPING

@ UNIVERSITY

21/49

Example: Potential deadlock

Main: starting and joining our threads

int main()
{
mutex A;
mutex B;

thread AB{deadlock, ref(A), ref(B)};
thread BA{deadlock, ref(B), ref(A)};

AB.join();
BA.join();

cout << "Main done" << endl;

return O;

II LINKOPING
@ UNIVERSITY

22/49

Example: Potential deadlock

Deadlock avoidance

void no_deadlock(mutex& x, mutex& y)
{
auto id = this_thread::get_id();
lock(x, y);
lock_guard<mutex> lgx{x, adopt_lock};
lock_guard<mutex> lgy{y, adopt_lock};
cout << id << ": Have lock " << &x << " and " << &y << endl;
cout << id << ": Doing stuff requiring both locks" << endl;
}
LINKOPING

@ UNIVERSITY

3 Futures

II LINKOPING
o UNIVERSITY

std::promise

Promise to deliver communication (or be done) in the future.

Constructor:

promise();
promise(promise&& other);
promise(const promise& other)

delete;

Selected members:

std::future<T> get_future();

void set_value(const R& value);

void set_value();

void set_exception(std::exception_ptr p);

24/49

LINKOPING
UNIVERSITY

25/49

std::future

Waits for a promise to be fulfilled.

Constructor:

future () ;
future(future&& other);
future(const future& other) = delete;

Selected members:

T get();
void wait() comnst;

II LINKOPING
@ UNIVERSITY

Example: Using promise and future

Create promises and futures and move them

int main()

{
promise<void> say_welcome;
promise<string> say_errand;
promise<void> reply;
future<void> get_welcome = say_welcome.get_future();
future<string> get_errand = say_errand.get_future();
future<void> get_reply = reply.get_future();
thread r(receptionist, move(say_welcome), move(get_errand), move(reply));
thread v(visitor, move(get_welcome), move(say_errand), move(get_reply));
r.join();
v.join();
cout << "Main done" << endl;
}

26/49

LINKOPING
UNIVERSITY

Example: Using promise and future

Fulfill promise and wait for future

void receptionist(promise<void> say_welcome, future<string> errand,
promise<void> reply)
{
cout << "R: Welcome, how can I help you?" << endl;
say_welcome.set_value();

string name = errand.get();
cout << "R: Please enter, "
reply.set_value();

"

<< name << is expecting you." << endl;

void visitor (future<void> get_welcome, promise<string> tell_errand,
future<void> get_reply)
{
string name{"Mr X"};
get_welcome.wait ();
cout << "V: Hi, I'm here to meet " << name << endl;
tell_errand.set_value (name);
get_reply.wait ();
cout << "V: Thank you" << endl;

27149

LINKOPING
UNIVERSITY

4 Condition variables

II LINKOPING
o UNIVERSITY

29/49

std::condition_variable

Provides a way to wait for changes of a shared resource without blocking the re-
source lock.

Constructor:

‘ condition_variable();

Selected members:

void notify_one();
void notify_all();
void wait(std::unique_lock<std::mutex>& lock);

template< class Predicate >
void wait(std::unique_lock<std::mutex>& lock, Predicate pred);

II LINKOPING
@ UNIVERSITY

Example: Using a condition variable

Our worker thread

{

uniform_int_distribution<int> roll(1,6);

for (int i{}; i < 100; ++i)
{
int n{roll(die)};
for (int j{}; j < n; ++j)
this_thread::sleep_for(ims);

lock_guard<mutex> lock(cout_mutex);
cout << this_thread::get_id()

<< " iteration " << i

<< " slept for " << n << endl;

}

unique_lock<mutex> done_mutex{m};
--done;
change.notify_one();

void worker (mt19937& die, int& done, mutex& m, condition_variable& change)

30/49

LINKOPING
@ UNIVERSITY

31/49

Example: Using a condition variable

Main: creating and detaching threads

int main()

{
const int N{10};
int done{N};
random_device rdev;
mt19937 die(rdev());

mutex base_mutex{};
condition_variable cond_change{};

for (int i{}; i < Nj ++i)

{

thread (worker,
ref (die),
ref (done),
ref (base_mutex),
ref (cond_change)) .detach();

II LINKOPING
@ UNIVERSITY

Example: using a condition variable

Main: finish when every thread is done

unique_lock<mutex> done_mutex{base_mutex};

while (done > 0)

{
cout_mutex.lock();
cout << "Main: still threads running!" << endl;
cout_mutex.unlock();

cond_change.wait (done_mutex);
s

done_mutex.unlock();

cout << "Main done" << endl;

32/49

LINKOPING
UNIVERSITY

5 Packaged Task

II LINKOPING
o UNIVERSITY

34/49

std::packaged_task

Couple a task to deliver its result through a future, preparing it for asynchronous
execution.

Class and constructor (compare to std::function):

template< class R, class ...Args >
class packaged_task<R(Args...)>;

template <class F>
explicit packaged_task(F&& f);

Selected members:

std::future<R> get_future();

void operator () (ArgTypes... args);

II LINKOPING
@ UNIVERSITY

Example: Using a packaged task,

setup

#include <iostream>
#include <vector>
#include <numeric>
#include <future>

#include "divider.h"
using namespace std;

using data = vector<int>;
using data_it = data::iterator;

int main()
{

const auto thread_count{9};

vector<int> v(100000000, 1);
Divider<vector<int>> d{v, thread_count};

35/49

II LINKOPING
@ UNIVERSITY

36/49

Example: Using a packaged task, divide work

vector<future<int>> partial_results;
for (unsigned i{}; i < thread_count; ++i)

{

packaged_task<int(data_it, data_it, int)> worker (accumulate<data_it,intp);

partial_results.emplace_back(worker.get_future());

thread{ move(worker), d.begin(i), d.end(i), 0 }.detach();
}

II LINKOPING
@ UNIVERSITY

Example: Using a packaged task, fetch results

}

cout << "Sum:

"

<< accumulate(begin(partial_results), end(partial_results), O,

<< endl;

return O;

[1(int sum, future<int>& fut){ return sum + fut.get();

37/49

LINKOPING
UNIVERSITY

6 Async

II LINKOPING
o UNIVERSITY

39/49

std::.async

Prepare a function for asynchronous execution.

Function template:

template< class Function, class... Args >
std::future<std::invoke_result_t<std::decay_t<Function>, std::decay_t<Args>...>>

async(std::launch policy, Function&& f, Args&&... args);

Policies:

std::launch::async enable asynchronous evaluation
std::launch::deferred enable lazy evaluation

II LINKOPING
@ UNIVERSITY

40/49

Example: Using async, setup same as before

#include <iostream>
#include <vector>
#include <numeric>
#include <future>

#include "divider.h"
using namespace std;

using data = vector<int>;
using data_it = data::iterator;

int main()
{

const auto thread_count{9};

vector<int> v(100000000, 1);
Divider<vector<int>> d{v, thread_count};

II LINKOPING
@ UNIVERSITY

Example: Using async, divide work

vector<future<int>> partial_results;
for (unsigned i{}; i < thread_count; ++i)
{

partial_results.emplace_back(

async<int(data_it, data_it, int)>(launch::async,

accumulate, d.begin(i), d.end(i),

);

41/49

LINKOPING
UNIVERSITY

42/49

Example: Using async, fetch results same as before

}

cout << "Sum:

"

<< accumulate(begin(partial_results), end(partial_results), O,

<< endl;

return O;

[1(int sum, future<int>& fut){ return sum + fut.get();

LINKOPING
UNIVERSITY

7 Execution policy

II LINKOPING
o UNIVERSITY

44149

std:.execution

Execution policies let us specify sequential or parallell algorithm execution.

namespace execution {

class sequenced_policy;
class parallel_policy;

inline constexpr sequenced_policy seq{ T3

inline constexpr parallel_policy par{ s

inline constexpr parallel_unsequenced_policy par_unseq{ e
}

Algorithm specification example:

template< class ExecutionPolicy, class RndIt, class Cmp >
void sort(ExecutionPolicy&& policy, RndIt first, RndIt last, Cmp comp);

template< class ExecutionPolicy, class FwdIt, class UnaryFunc2 >
void for_each(ExecutionPolicy&& policy, FwdIt f, FwdIt 1, UnaryFunc2 f);

LINKOPING
UNIVERSITY

45/49

Example: Accumulate a vector, compare to previous

#include <iostream>
#include <vector>
#include <numeric>

using namespace std;

using data = vector<int>;
using data_it = data::iterator;

int main()
vector<int> v(100000000, 1);
cout << "Sum: "
<< reduce(execution::par, begin(v), end(v), 0);

<< endl;

return O;

}

LINKOPING
UNIVERSITY

Example: Print independent vector values

Program template

#include
#include
#include
#include
#include
#include

{

<iostream>
<iomanip>
<vector>
<numeric>
<algorithm>
<thread>

using namespace std;
int main()

vector<int> v (70);
iota(begin(v), end(v),

1)

46/49

II LINKOPING
@ UNIVERSITY

47149

Example: Print independent vector values

Sequential execution policy

for_each(begin(v), end(v), [1(int i) {
cout << setw(i) << 's' << endl;

38

LINKOPING
II.“ UNIVERSITY

48/49

Example: Print independent vector values

Manual thread creation (for comparision)

const auto thread_count{4};
const auto size = v.size();
const auto chunk_size{ size/thread_count };
const auto remainder{ size’%thread_count };

vector<thread> t;
auto b{ begin(v) };
for (unsigned i{}; i < thread_count; ++i)
{

auto e{ next(b, chunk_size + (i < remainder)) 1I};

t.emplace_back ([](auto start, auto end){

for (auto i{start}; i < end; ++i)
cout << setw(*i) << '\\' << endl;
}, b, e);

b = e;

}

for (auto &% i : t)
i.join();

II LINKOPING
@ UNIVERSITY

49749

Example: Print independent vector values

Parallell execution policy

Specified in C++17, but gee support is still(2017-12-04)

missing.
for_each(begin(v), end(v), [1(int i) {
cout << setw(i) << 'p' << endl;
B

LINKOPING
II.“ UNIVERSITY

www.liu.se

II LINKOPING
o UNIVERSITY

www.liu.se

	Thread creation
	Mutual exclusion
	Futures
	Condition variables
	Packaged Task
	Async
	Execution policy

