TDDD38/726G82 -

Advanced programming in

C++
STL Il

Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY



II LINKOPING
o UNIVERSITY



II LINKOPING
o UNIVERSITY



3/63

More on lterators

Iterating arrays

int array[3] {1, 2, 3};
for (int e : array)

{
}

cout << e << endl;

LINKOPING
II.“ UNIVERSITY



4/63

More on lterators

Iterating arrays

® arrays don’t have member functions

® more specifically; they don’t have begin and end
functions

® yet we can use range-based for-loops to iterate them

LINKOPING
II.“ UNIVERSITY



5/63

More on lterators

Range-based for-loops

auto it {std::begin(array)};
{ auto last {std::end(array)};
for (; it !'= last; ++it)

40 oo {

for (auto&& e : array)

auto&& e{*it};
//

} )

LINKOPING
II.“ UNIVERSITY



More on lterators

std::beginandstd::end

® std::begin(v)

e if v has a member begin(), return v.begin()

e if vis an array, return a pointer to the first element
® std::end(v)

¢ if v has a member end(), return v.end()

e if vis an array, return a pointer to the element past
the last

6/63

LINKOPING
II.“ UNIVERSITY



7/63

More on lterators

Declarations

template <typename C>
auto begin(C& c) -> decltype(c.begin())
{ return c.begin(); }

template <typename T, size_t N>
T* begin(T (&a)[N])
{ return a; }

LINKOPING
II.“ UNIVERSITY



8/63

More on lterators

Declarations

template <typename C>
auto end(C& c) -> decltype(c.end())
{ return c.end(); }

template <typename T, size_t N>
T* end(T (&a)[N])
{ return a + N; }

LINKOPING
II.“ UNIVERSITY



More on lterators

Iterator utility functions

® std:

® std:

® std:

® std:

:advance

:distance

‘next

‘prev

9/63

LINKOPING
II.“ UNIVERSITY



10/63

More on lterators

Utility

® These functions are more general (work with all
iterators)

® beware; these utility functions comes with some extra
cost, so think carefully before using them

LINKOPING
II.“ UNIVERSITY



11/63

More on lterators

Reverse iterators

vector<int> v {1, 2, 3};
auto it {v.rbegin()};
auto end {v.rend()};

// will write "3 2 1 " to the terminal

for (; it !'= end; ++it)
{

cout << *it << " ",
}

LINKOPING
II.“ UNIVERSITY



12/63

More on lterators

Reverse iterators

® A special type of iterator that traverses the container
backwards

® rbegin() will point to the last element in the container
(soend() !'= rbegin())

® rend() points to the element before the first one (so
begin() != rend())

® isonly available for containers with Bidirectionallterators

LINKOPING
II.“ UNIVERSITY



More on lterators

Const iterators

auto it {s.cbegin()};
auto end {s.cend()};

{

// reading is ok!
cout << *it << " ",

*it = 5;

set<int> const s {3, 6, 9},

for (; it '= end; ++it)

// writing is not ok...

13/63

LINKOPING
II.“ UNIVERSITY



14/63

More on lterators

Const iterators

® const_iterator is an iterator that can be used for only
reading data

¢ disallows modification of the underlying object

® is the only way to use iterators on containers marked
const

LINKOPING
II.“ UNIVERSITY



15/63

More on lterators

Access functions

std::rbegin() and std::rend()
® std::cbegin() and std::cend()
® You can even combine them:

® std::crbegin() and std::crend()

LINKOPING
II.“ UNIVERSITY



16/63

More on lterators

Input stream iterators

std::istream_iterator<int> iit {std::cin};
std::istream_iterator<int> end {};
while (iit != end)

{
X

cout << *iit++ << endl;

LINKOPING
II.“ UNIVERSITY



17/63

More on lterators

Input stream iterators

® std::istream_iterator are iterators that read data
from an input stream

® the template parameter defines what type should be
read from the stream

® data is read from the stream when the iterator is
incremented

® dereferencing returns a copy of last read object

® is an Inputlterator

LINKOPING
II.“ UNIVERSITY



18/63

More on lterators

Output stream iterators

std::ostream_iterator<int> oit {std::cout};
oit = 5; // will write 5 to the terminal

LINKOPING
II.“ UNIVERSITY



19/63

More on lterators

Output stream iterators

std::ostream_iterator<int> oit {std::cout, " "};
// will write "0 1 2 3 4 " to the terminal
for (int i{0}; i < 5; ++1i)

{
}

out = 1i;

LINKOPING
II.“ UNIVERSITY



20/63

More on lterators

Output stream iterators

® std::ostream_iterator are iterators that write data to
some output stream

® template parameter defines what type is to be written
® data is written to the stream during assignment
® is an Outputlterator

® constructor takes an extra parameter that defines a
delimiter string to insert after each write

LINKOPING
II.“ UNIVERSITY



II LINKOPING
o UNIVERSITY



22/63

Algorithms

Core of STL

® Everything in STL is based around algorithms and
containers

® There are 110+ algorithms defined in the STL (exact
amount depends on version)

e All algorithms operate on iterator ranges
® Uses lambdas and function objects heavily

¢ Defined (mostly) in <algorithm>

LINKOPING
II.“ UNIVERSITY



23/63

Algorithms

Algorithm categories

* Non-modifying sequence operations
* Modifying sequence operations

® Partitioning operations

® Sorting operations

® Sorted range operations

® Set operations

LINKOPING
II.“ UNIVERSITY



24/63

Algorithms

Algorithm categories

® Heap operations

® Minmax operations

® Comparison operations

® Permutation operations

® Numeric operations (<numeric>)

® Uninitialized operations (<memory>)

II LINKOPING
o UNIVERSITY



25/63

Algorithms

for_each; the dull one of the bunch!

void put(int n)

{
}

cout << n << endl;

int main()
{
std::vector<int> v { 1, 2, 3 };
std::for_each(std::begin(v), std::end(v), put);
}

LINKOPING
II.“ UNIVERSITY



26/63

Algorithms

Possible implementation

template <typename It, typename Function>
Function for_each(It first, It last, Function f)

while (first != last)
{

f(*first++);
}

return f;

}

LINKOPING
II.“ UNIVERSITY



Algorithms

What will be printed?

std::vector<int> v {1, 2, 3};
auto f {[x = 0](int n) mutable

{
X +=n;
return x;
i3 ¥

std::for_each(std::begin(v), std::end(v),
cout << f(0) << endl;

f);

27/63

LINKOPING
II.“ UNIVERSITY



Algorithms

Answer

® 0 will be printed

® x is an internal variable accessible inside the lambda
which will retain its value through each successive call to
f

® however; std: : for_each takes f as a copy, so f will not
have been called when we reach the print statement

28/63

LINKOPING
II.“ UNIVERSITY



29/63

Algorithms

Possible fix

std::vector<int> v {1, 2, 3};
auto f {[x = 0](int n) mutable

{
X +=n;
return x;
i3 ¥

std::for_each(std::begin(v), std::end(v),
std::ref(f));
cout << f(0) << endl;

LINKOPING
II.“ UNIVERSITY



30/63

Algorithms

std::ref

® std::ref(x) forces the compiler to interpret x as an
Ivalue

® thus forcing any template-parameters to deduce it as a
reference parameter rather than a by-value parameter

LINKOPING
II.“ UNIVERSITY



31/63

Algorithms

Another possible fix

std::vector<int> v {1, 2, 3};
auto f {[x = 0](int n) mutable

{
X +=n;
return x;
i3 ¥

f = std::for_each(std::begin(v), std::end(v), f);
cout << f(0) << endl;

LINKOPING
II.“ UNIVERSITY



Algorithms

std::find

std::vector<int> v {5, -2, 8, 4, 7};
auto it {

std::find(std::begin(v), std::end(v), 8)
3
if (it == std::end(v))
{
}
else

{
}

// we didn't find it :(

cout << *it << endl;

32/63

LINKOPING
II.“ UNIVERSITY



33/63

Algorithms

Predicate algorithms

std::set<int>m { -1, 4, 0, 3 };
auto p {[](auto a)

{
return a >= 0;
1}
if (std::all_of(std::begin(m), std::end(m), p))

// all of the numbers are positive

}

LINKOPING
II.“ UNIVERSITY



34/63

Algorithms

Predicate algorithms

template <typename It,
typename Predicate>
bool all_of(It first, It last, Predicate p)
{
while (first != last)

{
if (Ip(*first++))

return false;

3
b

return true;

}

LINKOPING
II.“ UNIVERSITY



35/63

Algorithms

std: :copy

std::vector<int> v {1, 2, 3};

std::set<int> s {};

std::copy(std::begin(v), std::end(v),
std::inserter(s, std::end(s)));

LINKOPING
II.“ UNIVERSITY



36/63

Algorithms

A cool usage of std: : copy and stream iterators

std::vector<int> v{1, 2, 3};
std::copy(std::begin(v), std::end(v),
std::ostream_iterator<int>{cout, " "});

LINKOPING
II.“ UNIVERSITY



37/63

Algorithms

Another cool usage of std: : copy

std::vector<int> v;

auto begin{std::istream_iterator<int>{cin}};
auto end{std::istream_iterator<int>{}};
std::copy(begin, end, std::back_inserter(v));

LINKOPING
II.“ UNIVERSITY



38/63

Algorithms

std::transform

std::vector<std::string> v{"1", "2", "3"},
std::vector<int> target{};

std::transform(std: :begin(v), std::end(v),
std::back_inserter(target),
[](std::string const& s)
{

return std::stoi(s);

1K

LINKOPING
II.“ UNIVERSITY



39/63

Algorithms

std::remove_if

std::vector<int> v{1, -1, -7, 4, 2};

v.erase(
std::remove_if(std::begin(v), std::end(v),
[1(int n)
{

return n < Q;
}), std::end(v));

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

LINKOPING
II.“ UNIVERSITY



Algorithms

std::remove_if

40/63

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

‘ elzd

begin

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

] elzd

begin

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

] elzd

begin

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

] elzd

begin

LINKOPING
II.“ UNIVERSITY



40/63

Algorithms

std::remove_if

] erzd

begin

LINKOPING
II.“ UNIVERSITY



Algorithms

std::remove_if

-7

o

begin

40/63

LINKOPING
II.“ UNIVERSITY



41/63

Algorithms

A note on modifying sequence operations

® algorithms operate on iterator ranges

® it is not possible to remove or add elements through
arbitrary iterators

® due to this, no algorithm is able to remove elements
from containers

® (they are able to add elements with the use of output
iterators)

LINKOPING
II.“ UNIVERSITY



Algorithms

Modifying sequence operations

e All algorithms that are meant to remove elements will
instead move them to the end of the range and return
an iterator to the first removed element

® with that iterator we can now call the erase function of
the underlying container to actually remove those
elements

42/63

LINKOPING
II.“ UNIVERSITY



43/63

Algorithms

std::accumulate

#include <numeric>
//
int main()
{
std::vector<int> v{1, 2, 3, 4, 5};
int sum{
std::accumulate(std: :begin(v), std::end(v), 0)
+i
cout << sum << endl; // will print 15
}

LINKOPING
II.“ UNIVERSITY



44/63

Algorithms

std::accumulate

std::set<std::string> v{"1", "2", "3"},
int result{
std::accumulate(std::begin(v), std::end(v), 4,
[J(int n, std::string const& s)
{
return n + std::stoi(s);

1)

}s

LINKOPING
II.“ UNIVERSITY



45/63

Algorithms

std::accumulate

® std::accumulate is like a fold-expression
® but it operates during runtime on iterator ranges

¢ very flexible when combining values into a single value

LINKOPING
II.“ UNIVERSITY



46/63

Algorithms

Final words

® There are a lot of algorithms
® You are not expected to memorize them all

® However you must be able to find suitable algorithms
and use them

LINKOPING
II.“ UNIVERSITY



47/63

Algorithms

Now go forth and use this great power!

II LINKOPING
o UNIVERSITY



II LINKOPING
o UNIVERSITY



49/63

More on Function Objects

std::function

#include <functional>
void foo() { }
struct Functor

{
void operator()() { }
}i
int main()
{
std::function<void()> fun;
fun = foo;
fun = Functor{};
fun = [10) { };

LINKOPING
II.“ UNIVERSITY



More on Function Objects

std::function

® Atype to represent any callable object

® Specify in the template parameter what signature the
callable object must have

® can be used to store lambdas as variables

50/63

LINKOPING
II.“ UNIVERSITY



51/63

More on Function Objects

Some problems with std: : function

void foo(int) { }

void bar(int, int = 0) { }

int main()

{
std::function<void(int)> fun {foo}; // ok!
fun = bar; // not ok

LINKOPING
II.“ UNIVERSITY



More on Function Objects

Some problems with std: : function

® the specified signature must be an exact match

® itis not enough that the function we are trying to store
is callable in the specified way

52/63

LINKOPING
II.“ UNIVERSITY



53/63

More on Function Objects

A possible solution

void foo(int) { }
void bar(int, int = 0) { }
int main()
{
std::function<void(int)> fun {foo};
fun = std::bind(bar, placeholders::_1, 0);

}

LINKOPING
II.“ UNIVERSITY



More on Function Objects

std::bind

® std::bind generates a function-object

® the function-object will be based on some other
function-object

® with std: :bind we can create lambdas that call
functions where some or all of the arguments have
specified values

54/63

LINKOPING
II.“ UNIVERSITY



55/63

More on Function Objects

std::bind

int add(int x, int y)
{

i

return x + vy,

int main()

std::bind(add, 5, 10)(); // will return 15
}

LINKOPING
II.“ UNIVERSITY



56/63

More on Function Objects

std::bind

int main()
{
auto f{std::bind(add, placeholders::_1, 10)};
f(0); // will return 10
f(10); // will return 20

}

LINKOPING
II.“ UNIVERSITY



57/63

More on Function Objects

std::bind

int sub(int a, int b)

{
}

int main()

{

return a - b;

using namespace std::placeholders;
auto f{std::bind(sub, _2,_1)};
f(10, 5); // will return -5

f(2, 10); // will return 8

LINKOPING
II.“ UNIVERSITY



More on Function Objects
std::bind
® placeholders are used to specify which arguments
should be free

® that is, which arguments should be available in the
generated function

® placeholders: :_1 represents the first argument to the
generated function

® placeholders::_2 represents the second argument,
and so on, up to some implemenation defined number

58/63

LINKOPING
II.“ UNIVERSITY



59/63

More on Function Objects

Another problem with std: : function

struct Cls
{
void foo() { }
iy
int main()
{
std: :function<void()> fun;
Cls c{};
fun = c.foo; // not ok
fun = &Cls::foo; // not ok
}

LINKOPING
II.“ UNIVERSITY



60/63

More on Function Objects

Why?

®* Member functions are not ordinary functions

® Each member function requires an object to be called
from

® Due to this, they cannot be bound to std: : function

LINKOPING
II.“ UNIVERSITY



61/63

More on Function Objects

Solution

Cls c{};

auto foo{std::mem_fn(&Cls::foo0)};
std::function<void()> fun;

fun = std::bind(foo, c);

LINKOPING
II.“ UNIVERSITY



62/63

More on Function Objects

std: :mem_fn

® std::mem_fn converts a member function pointer to a
normal function

® the generated function takes the object as a parameter

® therefore we can bind the result of std: :mem_fn with
the C1ls object c

® this will make fun() equivalent to c.foo()

LINKOPING
II.“ UNIVERSITY



More on Function Objects

What will be printed?

int funi() { return 1; }
int fun2(int a) { return a * 3; }

int main()
function<int()> fun{funi};
fun = bind([](int a, int b)
{

return a + b;
} 1, fun());

fun = [fun]() { return 2 * fun(); };
cout << bind([](int x, int y, int z)

return fun2(x) + y;
3, -2, 1, 17)(fun(), 3);

63/63

II LINKOPING
o UNIVERSITY



II LINKOPING
o UNIVERSITY


www.liu.se

	More on Iterators
	Algorithms
	More on Function Objects

