
TDDD38/726G82 ‐
Advanced programming in
C++
STL III

Christoffer Holm

Department of Computer and information science



1 More on Iterators
2 Algorithms
3 More on Function Objects



1 More on Iterators
2 Algorithms
3 More on Function Objects



3 / 63

More on Iterators
Iterating arrays

int array[3] {1, 2, 3};
for (int e : array)
{
cout << e << endl;

}



4 / 63

More on Iterators
Iterating arrays

‚ arrays don’t have member functions

‚ more specifically; they don’t have begin and end
functions

‚ yet we can use range‐based for‐loops to iterate them



5 / 63

More on Iterators
Range‐based for‐loops

for (auto&& e : array)
{

// ...

}

auto it {std::begin(array)};
auto last {std::end(array)};
for (; it != last; ++it)
{
auto&& e{*it};
// ...

}



6 / 63

More on Iterators
std::begin and std::end

‚ std::begin(v)

‚ if v has a member begin(), return v.begin()

‚ if v is an array, return a pointer to the first element

‚ std::end(v)

‚ if v has a member end(), return v.end()

‚ if v is an array, return a pointer to the element past
the last



7 / 63

More on Iterators
Declarations

template <typename C>
auto begin(C& c) -> decltype(c.begin())
{ return c.begin(); }

template <typename T, size_t N>
T* begin(T (&a)[N])
{ return a; }



8 / 63

More on Iterators
Declarations

template <typename C>
auto end(C& c) -> decltype(c.end())
{ return c.end(); }

template <typename T, size_t N>
T* end(T (&a)[N])
{ return a + N; }



9 / 63

More on Iterators
Iterator utility functions

‚ std::advance

‚ std::distance

‚ std::next

‚ std::prev



10 / 63

More on Iterators
Utility

‚ These functions are more general (work with all
iterators)

‚ beware; these utility functions comes with some extra
cost, so think carefully before using them



11 / 63

More on Iterators
Reverse iterators

vector<int> v {1, 2, 3};
auto it {v.rbegin()};
auto end {v.rend()};

// will write "3 2 1 " to the terminal
for (; it != end; ++it)
{
cout << *it << " ";

}



12 / 63

More on Iterators
Reverse iterators

‚ A special type of iterator that traverses the container
backwards

‚ rbegin() will point to the last element in the container
(so end() != rbegin())

‚ rend() points to the element before the first one (so
begin() != rend())

‚ is only available for containers with BidirectionalIterators



13 / 63

More on Iterators
Const iterators

set<int> const s {3, 6, 9};
auto it {s.cbegin()};
auto end {s.cend()};
for (; it != end; ++it)
{
// reading is ok!
cout << *it << " ";
// writing is not ok...
*it = 5;

}



14 / 63

More on Iterators
Const iterators

‚ const_iterator is an iterator that can be used for only
reading data

‚ disallows modification of the underlying object

‚ is the only way to use iterators on containers marked
const



15 / 63

More on Iterators
Access functions

‚ std::rbegin() and std::rend()

‚ std::cbegin() and std::cend()

‚ You can even combine them:

‚ std::crbegin() and std::crend()



16 / 63

More on Iterators
Input stream iterators

std::istream_iterator<int> iit {std::cin};
std::istream_iterator<int> end {};
while (iit != end)
{
cout << *iit++ << endl;

}



17 / 63

More on Iterators
Input stream iterators

‚ std::istream_iterator are iterators that read data
from an input stream

‚ the template parameter defines what type should be
read from the stream

‚ data is read from the stream when the iterator is
incremented

‚ dereferencing returns a copy of last read object

‚ is an InputIterator



18 / 63

More on Iterators
Output stream iterators

std::ostream_iterator<int> oit {std::cout};
oit = 5; // will write 5 to the terminal



19 / 63

More on Iterators
Output stream iterators

std::ostream_iterator<int> oit {std::cout, " "};

// will write "0 1 2 3 4 " to the terminal
for (int i{0}; i < 5; ++i)
{
out = i;

}



20 / 63

More on Iterators
Output stream iterators

‚ std::ostream_iterator are iterators that write data to
some output stream

‚ template parameter defines what type is to be written

‚ data is written to the stream during assignment

‚ is an OutputIterator

‚ constructor takes an extra parameter that defines a
delimiter string to insert after each write



1 More on Iterators
2 Algorithms
3 More on Function Objects



22 / 63

Algorithms
Core of STL

‚ Everything in STL is based around algorithms and
containers

‚ There are 110+ algorithms defined in the STL (exact
amount depends on version)

‚ All algorithms operate on iterator ranges

‚ Uses lambdas and function objects heavily

‚ Defined (mostly) in <algorithm>



23 / 63

Algorithms
Algorithm categories

‚ Non‐modifying sequence operations

‚ Modifying sequence operations

‚ Partitioning operations

‚ Sorting operations

‚ Sorted range operations

‚ Set operations



24 / 63

Algorithms
Algorithm categories

‚ Heap operations

‚ Minmax operations

‚ Comparison operations

‚ Permutation operations

‚ Numeric operations (<numeric>)

‚ Uninitialized operations (<memory>)



25 / 63

Algorithms
for_each; the dull one of the bunch!

void put(int n)
{
cout << n << endl;

}

int main()
{
std::vector<int> v { 1, 2, 3 };
std::for_each(std::begin(v), std::end(v), put);

}



26 / 63

Algorithms
Possible implementation

template <typename It, typename Function>
Function for_each(It first, It last, Function f)
{
while (first != last)
{
f(*first++);

}
return f;

}



27 / 63

Algorithms
What will be printed?

std::vector<int> v {1, 2, 3};
auto f {[x = 0](int n) mutable

{
x += n;
return x;

}};
std::for_each(std::begin(v), std::end(v), f);
cout << f(0) << endl;



28 / 63

Algorithms
Answer

‚ 0 will be printed

‚ x is an internal variable accessible inside the lambda
which will retain its value through each successive call to
f

‚ however; std::for_each takes f as a copy, so f will not
have been called when we reach the print statement



29 / 63

Algorithms
Possible fix

std::vector<int> v {1, 2, 3};
auto f {[x = 0](int n) mutable

{
x += n;
return x;

}};
std::for_each(std::begin(v), std::end(v),

std::ref(f));
cout << f(0) << endl;



30 / 63

Algorithms
std::ref

‚ std::ref(x) forces the compiler to interpret x as an
lvalue

‚ thus forcing any template‐parameters to deduce it as a
reference parameter rather than a by‐value parameter



31 / 63

Algorithms
Another possible fix

std::vector<int> v {1, 2, 3};
auto f {[x = 0](int n) mutable

{
x += n;
return x;

}};
f = std::for_each(std::begin(v), std::end(v), f);
cout << f(0) << endl;



32 / 63

Algorithms
std::find

std::vector<int> v {5, -2, 8, 4, 7};
auto it {
std::find(std::begin(v), std::end(v), 8)

};
if (it == std::end(v))
{
// we didn't find it :(

}
else
{
cout << *it << endl;

}



33 / 63

Algorithms
Predicate algorithms

std::set<int> m { -1, 4, 0, 3 };
auto p {[](auto a)

{
return a >= 0;

}};
if (std::all_of(std::begin(m), std::end(m), p))
{
// all of the numbers are positive

}



34 / 63

Algorithms
Predicate algorithms

template <typename It,
typename Predicate>

bool all_of(It first, It last, Predicate p)
{
while (first != last)
{
if (!p(*first++))
{
return false;

}
}
return true;

}



35 / 63

Algorithms
std::copy

std::vector<int> v {1, 2, 3};
std::set<int> s {};
std::copy(std::begin(v), std::end(v),

std::inserter(s, std::end(s)));



36 / 63

Algorithms
A cool usage of std::copy and stream iterators

std::vector<int> v{1, 2, 3};
std::copy(std::begin(v), std::end(v),

std::ostream_iterator<int>{cout, " "});



37 / 63

Algorithms
Another cool usage of std::copy

std::vector<int> v;
auto begin{std::istream_iterator<int>{cin}};
auto end{std::istream_iterator<int>{}};
std::copy(begin, end, std::back_inserter(v));



38 / 63

Algorithms
std::transform

std::vector<std::string> v{"1", "2", "3"};
std::vector<int> target{};

std::transform(std::begin(v), std::end(v),
std::back_inserter(target),
[](std::string const& s)
{
return std::stoi(s);

});



39 / 63

Algorithms
std::remove_if

std::vector<int> v{1, -1, -7, 4, 2};
v.erase(

std::remove_if(std::begin(v), std::end(v),
[](int n)
{
return n < 0;

}), std::end(v));



40 / 63

Algorithms
std::remove_if

1 -1 -7 4 2

end
begin



40 / 63

Algorithms
std::remove_if

1 -1 -7 4 2

end
begin



40 / 63

Algorithms
std::remove_if

1 -1 -7 4 2

end
begin



40 / 63

Algorithms
std::remove_if

1 2 -7 4 -1

end
begin



40 / 63

Algorithms
std::remove_if

1 2 -7 4 -1

begin
end



40 / 63

Algorithms
std::remove_if

1 2 -7 4 -1

end
begin



40 / 63

Algorithms
std::remove_if

1 2 -7 4 -1

end
begin



40 / 63

Algorithms
std::remove_if

1 2 4 -7 -1

end
begin



40 / 63

Algorithms
std::remove_if

1 2 4 -7 -1

begin
end



40 / 63

Algorithms
std::remove_if

1 2 4 -7 -1

end
begin



41 / 63

Algorithms
A note on modifying sequence operations

‚ algorithms operate on iterator ranges

‚ it is not possible to remove or add elements through
arbitrary iterators

‚ due to this, no algorithm is able to remove elements
from containers

‚ (they are able to add elements with the use of output
iterators)



42 / 63

Algorithms
Modifying sequence operations

‚ All algorithms that are meant to remove elements will
instead move them to the end of the range and return
an iterator to the first removed element

‚ with that iterator we can now call the erase function of
the underlying container to actually remove those
elements



43 / 63

Algorithms
std::accumulate

#include <numeric>
// ...
int main()
{
std::vector<int> v{1, 2, 3, 4, 5};
int sum{
std::accumulate(std::begin(v), std::end(v), 0)

};
cout << sum << endl; // will print 15

}



44 / 63

Algorithms
std::accumulate

std::set<std::string> v{"1", "2", "3"};
int result{
std::accumulate(std::begin(v), std::end(v), 4,

[](int n, std::string const& s)
{
return n + std::stoi(s);

})
};



45 / 63

Algorithms
std::accumulate

‚ std::accumulate is like a fold‐expression

‚ but it operates during runtime on iterator ranges

‚ very flexible when combining values into a single value



46 / 63

Algorithms
Final words

‚ There are a lot of algorithms

‚ You are not expected to memorize them all

‚ However you must be able to find suitable algorithms
and use them



47 / 63

Algorithms

Now go forth and use this great power!



1 More on Iterators
2 Algorithms
3 More on Function Objects



49 / 63

More on Function Objects
std::function

#include <functional>
void foo() { }
struct Functor
{
void operator()() { }

};
int main()
{
std::function<void()> fun;
fun = foo;
fun = Functor{};
fun = []() { };

}



50 / 63

More on Function Objects
std::function

‚ A type to represent any callable object

‚ Specify in the template parameter what signature the
callable object must have

‚ can be used to store lambdas as variables



51 / 63

More on Function Objects
Some problems with std::function

void foo(int) { }
void bar(int, int = 0) { }
int main()
{
std::function<void(int)> fun {foo}; // ok!
fun = bar; // not ok

}



52 / 63

More on Function Objects
Some problems with std::function

‚ the specified signature must be an exact match

‚ it is not enough that the function we are trying to store
is callable in the specified way



53 / 63

More on Function Objects
A possible solution

void foo(int) { }
void bar(int, int = 0) { }
int main()
{
std::function<void(int)> fun {foo};
fun = std::bind(bar, placeholders::_1, 0);

}



54 / 63

More on Function Objects
std::bind

‚ std::bind generates a function‐object

‚ the function‐object will be based on some other
function‐object

‚ with std::bind we can create lambdas that call
functions where some or all of the arguments have
specified values



55 / 63

More on Function Objects
std::bind

int add(int x, int y)
{
return x + y;

}

int main()
{
std::bind(add, 5, 10)(); // will return 15

}



56 / 63

More on Function Objects
std::bind

int main()
{
auto f{std::bind(add, placeholders::_1, 10)};
f(0); // will return 10
f(10); // will return 20

}



57 / 63

More on Function Objects
std::bind

int sub(int a, int b)
{
return a - b;

}
int main()
{
using namespace std::placeholders;
auto f{std::bind(sub, _2,_1)};
f(10, 5); // will return -5
f(2, 10); // will return 8

}



58 / 63

More on Function Objects
std::bind

‚ placeholders are used to specify which arguments
should be free

‚ that is, which arguments should be available in the
generated function

‚ placeholders::_1 represents the first argument to the
generated function

‚ placeholders::_2 represents the second argument,
and so on, up to some implemenation defined number



59 / 63

More on Function Objects
Another problem with std::function

struct Cls
{
void foo() { }

};

int main()
{
std::function<void()> fun;
Cls c{};
fun = c.foo; // not ok
fun = &Cls::foo; // not ok

}



60 / 63

More on Function Objects
Why?

‚ Member functions are not ordinary functions

‚ Each member function requires an object to be called
from

‚ Due to this, they cannot be bound to std::function



61 / 63

More on Function Objects
Solution

Cls c{};
auto foo{std::mem_fn(&Cls::foo)};
std::function<void()> fun;
fun = std::bind(foo, c);



62 / 63

More on Function Objects
std::mem_fn

‚ std::mem_fn converts a member function pointer to a
normal function

‚ the generated function takes the object as a parameter

‚ therefore we can bind the result of std::mem_fn with
the Cls object c

‚ this will make fun() equivalent to c.foo()



63 / 63

More on Function Objects
What will be printed?

int fun1() { return 1; }
int fun2(int a) { return a * 3; }

int main()
{
function<int()> fun{fun1};

fun = bind([](int a, int b)
{

return a + b;
}, 1, fun());

fun = [fun]() { return 2 * fun(); };

cout << bind([](int x, int y, int z)
{

return fun2(x) + y;
}, _2, _1, 17)(fun(), 3);

}



www.liu.se

www.liu.se

	More on Iterators
	Algorithms
	More on Function Objects

