TDDD38/726G82 -

Advanced programming in

C++
STLII

Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY

A WN R

Iterators

Associative Containers
Container Adaptors
Lambda Functions

II LINKOPING
o UNIVERSITY

3/67

Iterators

General iterations

for (auto&& element : c)

{
3

//

LINKOPING
II.“ UNIVERSITY

4/67

Iterators

General iterations

® jterating over a sequential container means going
through all the elements in order

® semantically this is the same for all containers covered
so far

® however; implementation varies wildly

II LINKOPING
o UNIVERSITY

Iterators

General iterations

e with std::vector and std: :array we can iterate over
the actual memory

e forstd::list and std: :forward_1list we have to
follow pointers

® std::deque is a combination of the two

5/67

LINKOPING
II.“ UNIVERSITY

6/67

Iterators

General iterations

® Writing general code using these containers requires
abstraction

® we want one universal way of iterating over any
container

® this has been solved with iterators

II LINKOPING
o UNIVERSITY

7/67

Iterators

General iterations

for (auto it{c.begin()}; it != c.end(); ++it)

{
auto&& element{*it};
/7 ...

}

LINKOPING
II.“ UNIVERSITY

Iterators

Iterators

8/67

auto it{c.begin()};

auto end{c.end()};

while (it != end)

{
/7 ...
++it;

}

auto it{c.data()};

auto end{it + c.size()};

while (it != end)

{
/]
++it;

}

LINKOPING
II.“ UNIVERSITY

9/67

Iterators

Iterators

® iterators can be thought of as generalized pointers
® share similar interface and semantics with pointers

® However; no assumptions about the memory layout of
elements

® the end-iterator signifies that the iteration is complete,
i.e. we have visited all elements

® the end-iterator does not point to the last element, but
rather one element past the last element

LINKOPING
II.“ UNIVERSITY

Iterators

Iterator categories

® fForwardlterator

® can only step forward in the container
® Bidirectionallterator

® can step forward and backwards in the container
® RandomAccesslterator

® can access any element in the container

10/67

LINKOPING
II.“ UNIVERSITY

11/67

Iterators

Inputlterator

std::vector<int> v{};

auto it{v.begin()};

for (int i{0}; i < 10; ++i)
{

}

*it++ = 1

LINKOPING
II.“ UNIVERSITY

Iterators

Inputlterator

std::vector<int> v{};

auto it{v.begin()};

for (int i{0}; i < 10; ++i)
{

}

*it++ = 1

® Won't work; v.begin() returns an Inputiterator
® |nputiterators can only access existing elements

® v.insert orv.push_back to add elements

11/67

LINKOPING
II.“ UNIVERSITY

12/67

Iterators

Outputlterator

® The standard library is built on using iterators

® [terators define some kind of behaviour for various
components

® Sometimes we want the iterators to add elements rather
than modify existing ones

® This is where Outputlterators come in

LINKOPING
II.“ UNIVERSITY

Iterators

Outputlterator

® |nputlterator
+ Can access elements in container

— Cannot add elements to container

13/67

II LINKOPING
o UNIVERSITY

13/67

Iterators

Outputlterator

® |nputlterator
+ Can access elements in container
— Cannot add elements to container
® Qutputlterator
+ Can add elements to container

— Cannot access elements in container

II LINKOPING
o UNIVERSITY

14/67

Iterators

Outputlterators

® QOutputlterator is an [terator so it must define
operator++ and operator*

® An Outputlterator cannot access elements so
dereferencing the iterator shouldn’t do anything

¢ Likewise shouldn’t incrementing the iterator do anything

® The only operation that performs any work is operator=
which will insert the right-hand side into the container

LINKOPING
II.“ UNIVERSITY

15/67

Iterators

std::insert_iterator

std::vector<int> v{};

auto it{std::inserter(v, v.end())};
for (int i{0}; i < 10; ++i)

{

}

*it++ = 1

LINKOPING
II.“ UNIVERSITY

15/67

Iterators

std::insert_iterator

std::vector<int> v{};

auto it{std::inserter(v, v.end())};
for (int i{0}; i < 10; ++i)

{

}

*it = i;

LINKOPING
II.“ UNIVERSITY

15/67

Iterators

std::insert_iterator

std::vector<int> v{};

auto it{std::inserter(v, v.end())};
for (int i{0}; i < 10; ++i)

{

}

it = 1i;

LINKOPING
II.“ UNIVERSITY

15/67

Iterators

std::insert_iterator

std::vector<int> v{};

auto it{std::inserter(v, v.end())};
for (int i{0}; i < 10; ++i)

{

}

v.insert(v.end(), 1i);

LINKOPING
II.“ UNIVERSITY

16/67

Iterators

std::insert_iterator

® Each assignment calls insert on the underlying
container

® |s created with std::inserter
® must know which container it should operate on

®* must know where in the container the insertion should
happen

® Works with any container that has an insert function

LINKOPING
II.“ UNIVERSITY

Iterators

Other output iterators

® std::back_inserter

® std::front_inserter

17/67

II LINKOPING
o UNIVERSITY

17/67

Iterators

Other output iterators

® std::back_inserter
® |ike std::inserter but adds to the end
® calls push_back

® std::front_inserter

LINKOPING
II.“ UNIVERSITY

17/67

Iterators

Other output iterators

® std::back_inserter
® std::front_inserter
® |ike std: :back_inserter but adds to the front

® calls push_front

LINKOPING
II.“ UNIVERSITY

17/67

Iterators

Other output iterators

® std::back_inserter
® std::front_inserter

® These only need to know the container, since their
insertion positions are fixed

II LINKOPING
o UNIVERSITY

Iterators

Iterator hierarchy

18/67

~
Iterator
-
Inputiterator Outputlterator
- (front_inserter)
Forwardlterator (1nslerter)
(forward_list) (back_inserter)
Bidirectionallterator
(list)
RandomAccesslterator
(array) (deque) (vector)
N
.
N
II LINKOPING
o UNIVERSITY

19/67

Iterators

What will be printed?

int main()

{
std::vector<int> v {1, 3};
*std::back_inserter(v)++ = 7;

int value { ++(*v.begin()) };
std::inserter(v, v.begin() + 1) = value;
for (int i : v)

{
b

std::cout << i << " ",

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

21/67

Associative Containers

std: :set

std::set<int> set{};

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{}

std::set<int> set{};

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{}

set.insert(4);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{4}

set.insert(4);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{4}

set.insert(3);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{3, 4}

set.insert(3);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{3, 4}

set.insert(5);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{3, 4, 5}

set.insert(5);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{3, 4, 5}

set.insert(1);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{1, 3, 4, 5}

set.insert(1);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{1, 3, 4, 5}

set.insert(2);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{1, 2, 3, 4, 5}

set.insert(2);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{1, 2, 3, 4, 5}

set.erase(3);

LINKOPING
II.“ UNIVERSITY

21/67

Associative Containers

std: :set

{1, 2, 4, 5}

set.erase(3);

LINKOPING
II.“ UNIVERSITY

22/67

Associative Containers

std: :set

® std::set contains a set of unique values

® requires that the data type of the elements are
comparable

¢ will iterate through the elements in sorted order

® is represented as a binary search tree

LINKOPING
II.“ UNIVERSITY

Associative Containers

std: :set

® insertion: O(logn)
e deletion: O(logn)
* lookup: O(logn)

23/67

LINKOPING
II.“ UNIVERSITY

24/67

Associative Containers

Example

#include <set>
/AT
int main()
std::set<std::string> words{};
std::string str;
while (cin >> str)
set.insert(str);

for (auto const& word : words)

cout << word << endl;

II LINKOPING
o UNIVERSITY

25/67

Associative Containers

std: :map

std::map<std::string, int> map{};

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map

map["c"] = 3;

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map

map["c"] = 3;

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map

map['a"] = 1;

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map

n 1
n 3

o

O—

map['a"] = 1;

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map

n 1
n 3

o

O—

map["d"] = 4;

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map
llall 1
llCII 3
lldll 4

map["d"] = 4;

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map
llall 1
llCII 3
lldll 4

map["b"] = 2;

LINKOPING
II.“ UNIVERSITY

25/67

Associative Containers

std: :map
llall 1
llbll 2
llCII 3
lldll 4

map["b"] = 2;

LINKOPING
II.“ UNIVERSITY

26/67

Associative Containers

std: :map

® std::map associates a key with a value
® keys must be unigue and comparable

¢ will iterate through the key-value pairs in sorted order
(according to the key)

® both lookup and insertion can be done with operator[]

® implemented as a binary search tree

LINKOPING
II.“ UNIVERSITY

Associative Containers

std: :map

® insertion: O(logn)
e deletion: O(logn)
* lookup: O(logn)

27/67

LINKOPING
II.“ UNIVERSITY

28/67

Associative Containers

Example

#include <map>
/AT
int main()
std::map<std::string, int> words{};
std::string str;
while (cin >> str)
words[str]++;

for (std::pair<std::string, int> const& p : words)

cout << p.first << ": " << p.second << endl;

II LINKOPING
o UNIVERSITY

29/67

Associative Containers

Variants

® std::set and std: :map are the base associative
containers

® but there are several variations of these containers that
can be used

® itis important to choose the appropriate variant

LINKOPING
II.“ UNIVERSITY

Associative Containers

Variants

® multi*

® unordered_*

30/67

LINKOPING
II.“ UNIVERSITY

Associative Containers

Variants

® multi*
® std::multiset
® std::multimap

® unordered_*

30/67

LINKOPING
II.“ UNIVERSITY

Associative Containers

Variants

® multi*
® unordered_*
® std::unordered_set
® std::unordered_map
® std::unordered_multiset

® std::unordered_multimap

30/67

LINKOPING
II.“ UNIVERSITY

31/67

Associative Containers

std::multiset and std::map

¢ just like std: :set and/or std: :map but with one
exception;

® possible to store multiple duplicates of the same key

® can be likened to a list where elements are sorted by the
key

® In general these variants are more costly compared to
their normal counterparts

LINKOPING
II.“ UNIVERSITY

32/67

Associative Containers

unordered variants

e works like the other associative containers;

® but the elements are not sorted

these are usually implemented as hash tables

often a bit faster than the other variants since there are
less constraints on the implementation

® Note: the order is not defined, so assume nothing about
the order

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

34/67

Container Adaptors

Adaptors

® adaptors are wrappers around other containers
® adaptors exposes specific interfaces

® but they are not containers by themselves

LINKOPING
II.“ UNIVERSITY

35/67

Container Adaptors

std::stack

template <typename T,
typename Container = std::deque<T>>
class stack;

std::stack<int> st{};
st.top(); // top of stack
st.push(); // push to stack
st.pop(); // pop the stack

LINKOPING
II.“ UNIVERSITY

36/67

Container Adaptors

std::stack

std: :stack can be wrapped around any container that has
the following member functions:

® back()
® push_back()

® pop_back()

LINKOPING
II.“ UNIVERSITY

37/67

Container Adaptors

std: :queue

template <typename T,
typename Container = std::deque<T>>
class queue;

std: :queue<int> q{};

q.front(); // front of the queue

g.back(); // back of the queue

q.push(); // add element to back of queue
q.pop(); // pop first element of the queue

LINKOPING
II.“ UNIVERSITY

38/67

Container Adaptors

std: :queue

std: :queue can be wrapped around any container that has
the following member functions:

® back()
® front()

® push_back()

pop_front()

LINKOPING
II.“ UNIVERSITY

39/67

Container Adaptors

std::priority_queue

template <typename T,
typename Container = std::vector<T>,
typename Compare = std::less<T>>
class priority_queue;

std::priority_queue<int> pq{};
pg.top(); // get the largest value
pg.push(); // add an element

pg.pop(); // extract the largest value

LINKOPING
II.“ UNIVERSITY

Container Adaptors

std::priority_queue

® represents a (min- or max) heap
® stores it in some array-like container

® we can supply some custom comparator

40/67

LINKOPING
II.“ UNIVERSITY

41/67

Container Adaptors
std::priority_queue
std::priority_queue can be wrapped around any
container which fullfill the following requirements:
® the container has RandomAccessliterators
® |t must provide the following functions:
® front()
® push_back()

® pop_back()

LINKOPING
II.“ UNIVERSITY

42/67

Container Adaptors

Example

int main()
std::priority_queue<float, std::greater<float>> q{};

float value;
while (cin >> value)

q.push(value);
float sum{0.0};
while (!q.empty())
{

sum += q.top();

q.pop();

cout << sum << endl;

II LINKOPING
o UNIVERSITY

43/67

Container Adaptors

Explanation

¢ floating point addition is more precise for smaller values

® so if we add the smallest elements first we will get
better accuracy

® use the std: :greater comparator to make our queue a
min-heap

® that way, we will add the numbers in ascending order

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

Lambda Functions

Possible implementation of std: : less

45/67

template <typename T>
struct less

bool operator()(T const& lhs,
T const& rhs)

return lhs < rhs;

3}
}

int main()
less<int> obj{};

// we can use the function call
// operator to treat this object
// as a function

cout << obj(1, 2) << endl;

II LINKOPING
o UNIVERSITY

46/67

Lambda Functions

Possible implementation of std: : less

® less is aclass-type
® less defines the function call operator operator ()

e therefore all instances of less are both objects and
functions at the same time

® these types of classes are called function objects or
functors

LINKOPING
II.“ UNIVERSITY

47/67

Lambda Functions

First-class functions

template <typename Function>
auto perform(Function f) -> decltype(f())

{
}

return f();

LINKOPING
II.“ UNIVERSITY

48/67

Lambda Functions

First-class functions

struct my_function
{
int operator()()
{ return 1; }

3

int main()

{
my_function f{};
perform(f);

}

LINKOPING
II.“ UNIVERSITY

49/67

Lambda Functions

First-class functions

® Function-objects allows us to treat functions as data
® we can pass function-objects as parameters

e with this we can create highly customizable code

LINKOPING
II.“ UNIVERSITY

Lambda Functions

Example

template <typename Container
typename Compare>
bool is_sorted(Container const& c,
Compare const& comp)

{

auto it{c.begin()};

auto prev{it++};

for (; it !'= c.end(); ++it)

if (!comp(*prev, *it))
return false;
prev = it;

return true;

50/67

int main()

rivector<int> v{1,2,3,4};
::deque<int> d{3,2,1,0};

std::less<int> 1e{};
std::greater<int> gt{};

cout << is_sorted(v, 1t);
cout << is_sorted(d, gt);

II LINKOPING
o UNIVERSITY

51/67

Lambda Functions

Example

® The sorted function uses comp to compare each element
with the one before

® note that we can pass in any function object as second
parameter

® aslong as comp is callable, takes two parameters and
returns a boo1 this will work

® will work for both function objects and normal functions

® we can even define our own function object

LINKOPING
II.“ UNIVERSITY

52/67

Lambda Functions

Lambda expressions

std::vector<int> v{10, -1, 123};

is_sorted(v, [](int a, int b) -> bool

{
return abs(a - 10) < abs(b - 10);

1}

LINKOPING
II.“ UNIVERSITY

Lambda Functions

Lambda expressions

53/67

[1(int a, int b) -> bool

return abs(a - 10) < abs(b - 10);
}

struct my_lambda
bool operator()(int a, int b)
return abs(a - 10) < abs(b - 10);

}
}

II LINKOPING
o UNIVERSITY

54/67

Lambda Functions

Lambda expressions

® |ambda functions:

‘ [captures] (parameters) -> result { body; }

® essentially short-hand notation for generating function
objects

e useful when creating functions that are passed as
parameters

LINKOPING
II.“ UNIVERSITY

Lambda Functions

Captures

std::vector<int> v{10,
int x{10};

i3 ¥

is_sorted(v, comp);

-1, 123};

auto comp{[x](int a, int b) -> bool

return abs(a - x) < abs(b - x);

55/67

LINKOPING
II.“ UNIVERSITY

Lambda Functions

Captures

56/67

[x](int a, int b) -> bool

return abs(a - x) < abs(b - x);

}

struct my_lambda

my_lambda(int x) : x{x} { }
bool operator()(int a, int b)

return abs(a - x) < abs(b - x);
private:

int const x;

}

II LINKOPING
o UNIVERSITY

Lambda Functions

Captures

57/67

[&x](int a, int b) -> bool

return abs(a - x) < abs(b - x);

}

struct my_lambda

my_lambda(int& x) : x{x} { }
bool operator()(int a, int b)

return abs(a - x) < abs(b - x);
private:

int& x;

}

II LINKOPING
o UNIVERSITY

Lambda Functions

Captures

58/67

[x = 10](int a, int b) -> bool

return abs(a - x) < abs(b - x);

}

struct my_lambda

my_lambda() : x{10} { }
bool operator()(int a, int b)

return abs(a - x) < abs(b - x);
private:

int const x;

}

II LINKOPING
o UNIVERSITY

59/67

Lambda Functions

Captures

[x, &y, z = 10](/* function parameters */)

{
3

/] .

LINKOPING
II.“ UNIVERSITY

60/67

Lambda Functions
Captures
® |tis possible to make extra variables available inside
lambda expressions

® These extra variables (non-parameters) are said to be
captured inside the lambda

® They can either be copies or references of variables
declared outside the lambda

® They can also be completely new variables that attain its
current value between calls

LINKOPING
II.“ UNIVERSITY

61/67

Lambda Functions

mutable

int x{};
auto f = [x]() { x =1; };

LINKOPING
II.“ UNIVERSITY

61/67

Lambda Functions

mutable

int x{};
auto f = [x]() mutable { x = 1; };

LINKOPING
II.“ UNIVERSITY

Lambda Functions

mutable

® Everything captured by-value in lambdas will be const
® Including variables defined inside the lambda

® To make them non-const we have to declare the
lambda as mutable

62/67

LINKOPING
II.“ UNIVERSITY

63/67

Lambda Functions

Special captures

int global{1};
int main()

{

int x{2};
int y{3};
auto f{[&]()
{
return x + y + global;
1}
f(); // will return 6
y = -3;
f(); // will return ©

LINKOPING
II.“ UNIVERSITY

64/67

Lambda Functions

Special captures

int global{1};
int main()

{

int x{2};
int y{3};
auto F{[=]()
{
return x + y + global;
1}
f(); // will return 6
y = -3;
f(); // will return 6

LINKOPING
II.“ UNIVERSITY

65/67

Lambda Functions
Special captures

® Capture everything as reference:

[&] (parameters) -> result { body }

® Capture everything as a copy:

[=] (parameters) -> result { body }

® Both of these act as if they capture every variable
accessible in the code at the point of definition

® However; in reality they will capture only those variables
that are used inside the body

LINKOPING
II.“ UNIVERSITY

66/67

Lambda Functions

Mixing captures

[=, &x](/* parameters */)
{

}

70 ooc

Capture everything as copy, except x; capture x as reference.

LINKOPING
II.“ UNIVERSITY

67/67

Lambda Functions

What will be printed?

int main()

{
auto f = [n = 0]() mutable { return n++; };
auto g = f;
cout << f() << ' '
cout << f() << ' ';

cout << g() << endl;

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

www.liu.se

	Iterators
	Associative Containers
	Container Adaptors
	Lambda Functions

