TDDD38/726G82 -

Advanced programming in
C++

Inheritance & Polymorphism
Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY

II LINKOPING
o UNIVERSITY

II LINKOPING
o UNIVERSITY

Inheritance

Mental Model

class Employee

{

string name{"Christoffer"};
int id{44};
4

class Teacher : public Employee

{

string course{"TDDD38"};
}
Teacher c{};

3/35

LINKOPING
II.“ UNIVERSITY

Inheritance

Mental Model

class Employee

{

string name{"Christoffer"};
int id{44};
4

class Teacher : public Employee

{

string course{"TDDD38"};
}
Teacher c{};

3/35

name | Christoffer
id

Employee

Teacher

II LINKOPING
@ UNIVERSITY

Inheritance

Protected members

4/35

class Base

{
public:
Base(int x)

x{x} {}

private:
int x;

}

struct Derived : Base
{
Derived(int x)
Base{x} { }
int get()
{
return x; // Error!
}
3

LINKOPING
II.“ UNIVERSITY

Inheritance

Protected members

4/35

class Base

{
public:
Base(int x)

ox{x} {1}

protected:
int x;

}

struct Derived : Base

{
Derived(int x)
: Base{x} { }
int get()
{

}
}i

return x; // OK!

LINKOPING
II.“ UNIVERSITY

5/35

Inheritance

Protected members

protected members are:
® inaccessible outside the class;
® accessible within derived classes;

® accessible by friends of the class.

II LINKOPING
@ UNIVERSITY

6/35

Inheritance

Constructors
class Base class Derived : public Base
{ {
public: public:
Base(int x); Derived(int x, double y);
private: private:
int x; double y;
3 Iy
Base: :Base(int x) Derived: :Derived(int x, double y)
ox{x} : Base{x}, y{y}
{
} }

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};

}

class Derivedll final
: public Derived1l

{
int z{56};
3

7/35

Derivedll obj{};

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derivedl

{
int z{56};
3

7/35

Derivedll obj{};

Derived11

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derived1

{
int z{56};
3

7/35

Derivedll obj{};

Derivedl

Derived11

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derived1

{
int z{56};
3

7/35

Derivedll obj{};

[

Base

Derivedl

Derived11

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derived1

{
int z{56};
3

7/35

Derivedll obj{};

Derivedl

Derived11

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derived1

{
int z{56};
3

7/35

Derivedll obj{};

an

Base

v [231]

Derivedl

Derived11

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derived1

{
int z{56};
3

7/35

Derivedll obj{};

an

Base

v [231]

Derivedl
2 [50]

Derived11

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derived1

{
int z{56};
3

7/35

Derivedll obj{};

an

Base

v [231]

Derivedl

2 [s]

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derived1

{
int z{56};
3

7/35

Derivedll obj{};

an

Base

v [231]

Derivedl

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derivedl

{
int z{56};
3

7/35

Derivedll obj{};

an

Base

v [231]

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};
i
class Derivedil final
public Derivedl

{
int z{56};
3

7/35

Derivedll obj{};

an

Base

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};

}

class Derivedll final
: public Derived1l

{
int z{56};
3

7/35

Derivedll obj{};

<[]

LINKOPING
II.“ UNIVERSITY

Inheritance

Initialization & Destruction

class Base

{
int x{1};
3

class Derivedl : public Base

{
double y{2.34};

}

class Derivedll final
: public Derived1l

{
int z{56};
3

7/35

Derivedll obj{};

LINKOPING
II.“ UNIVERSITY

8/35

Inheritance

Initialization & Destruction

An object is initialized in the following order:

1. initialize base classes (call constructors);

2. initialize all data members in declaration order.
An object is destroyed in the following order:

1. destroy all data members in reverse order;

2. destroy base classes in reverse order.

LINKOPING
II.“ UNIVERSITY

Inheritance

Types of Inheritance

® public inheritance
® protected inheritance

® private inheritance

9/35

LINKOPING
II.“ UNIVERSITY

Inheritance

Types of Inheritance

® public inheritance
® class Derived : public Base

e All public and protected members of Base are
available as public and protected respectively in
Derived.

® protected inheritance

® private inheritance

9/35

LINKOPING
II.“ UNIVERSITY

Inheritance

Types of Inheritance

® public inheritance
® protected inheritance
® class Derived : protected Base

e All public and protected members of Base are
available as protected in Derived.

® private inheritance

9/35

LINKOPING
II.“ UNIVERSITY

Inheritance

Types of Inheritance

® public inheritance
® protected inheritance
® private inheritance
® class Derived : private Base

® All members of Base are inherited as private and
therefore inaccessible from Derived.

9/35

LINKOPING
II.“ UNIVERSITY

10/35

Inheritance

What will happen? Why?

struct Base

{
~Base() { cout << "Base" << endl; }

iy

struct Derived : public Base

{
~Derived() { cout << "Derived" << endl; }

iy
int main()

{
}

Derived d{};

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

Polymorphism

Dynamic dispatch

12/35

void printi()
{ cout << "1" << endl; }

struct Base

Base() = default;
void print()

foo();
protected:
using function_t = void (*)();

Base(function_t foo)
: foo{foo} { }

private:
function_t foo{printi};

r

void print2()
{ cout << "2" << endl; }

struct Derived : public Base

// inherit constructors from Base
using Base::Base;
// override default constructor
Derived()

: Derived{print2} { }

int main()
Base* bp {new Base{}};
bp->print();
delete bp;

bp = new Derived{};
bp->print();

II LINKOPING
@ UNIVERSITY

Polymorphism

Easier dynamic dispatch

struct Base
virtual void print()
cout << "1" << endl;
}
}
struct Derived : public Base
void print() override

cout << "2" << endl;

3

13/35

int main()

Base* bp {new Base{}};
bp->print();
delete bp;

bp = new Derived{};
bp->print();

II LINKOPING
@ UNIVERSITY

Polymorphism

What will happen? Why?

struct Base

{
~Base() { cout << "Base" << endl; }
}

struct Derived : public Base

~Derived() { cout << "Derived" << endl; }

}s

int main()

{
Base* bp{new Derived()};
delete bp;

}

14/35

LINKOPING
II.“ UNIVERSITY

Polymorphism

What will happen? Why?

struct Base

{
virtual ~Base() { cout << "Base" << endl; }
}

struct Derived : public Base

~Derived() { cout << "Derived" << endl; }

}s

int main()

{
Base* bp{new Derived()};
delete bp;

}

14/35

LINKOPING
II.“ UNIVERSITY

Polymorphism
Virtual destructor
® bp is of type Base* (the static type of bp);

® deleting bp will call the destructor of Base regardless of
what the dynamic type of bp is;

® However, if the destructor of base is virtual the
compiler will use dynamic dispatch to call the overriden
destructor from Derived, which in turn will call the
Base destructor.

Therefore we should always declare destructors as virtual
for types which will be used through pointers.

15/35

LINKOPING
II.“ UNIVERSITY

Polymorphism

Virtual Table

16/35

struct Base

virtual ~Base();
virtual void fun();
int vali{1};
int val2{2};

};

struct Derivedl : public Base

void fun() override;
double d{3.4};
3

struct Derivedl1l : public Derived1l

void fun() final;

’

void Base::fun()

cout << vall << ' ' << val2;

void Derivedl::fun()

Base::fun();
cout << ' ' << d;

}

void Derivedii::fun()

{
cout << "Derivedil ";
Derivedi::fun();

3

II LINKOPING
@ UNIVERSITY

17/35

Polymorphism
Virtual Table

Base* bp{new Base{}};

vptr [:} vtable for Base
+dtor: Base::~Base

+fun: Base::fun
bp D vall

B S vtable for Derivedl
ase val2 +dtor: Derivedi::-~Derivedl
+fun: Derived1l::fun

Base

vtable for Derivedil
+dtor: Derivedil::~Derivedll
+fun: Derivedll::fun

II LINKOPING
@ UNIVERSITY

17/35

Polymorphism
Virtual Table

Base* bp{new Derivedi1{}};

vtable for Base
vptr
P E\l +dtor: Base::~Base
+fun: Base::fun
bp D vall
B S vtable for Derivedl
ase val2 +dtor: Derivedi::-~Derivedl
Base +fun: Derived1l::fun
d vtable for Derivediil
Derivedl +dtor: Derivedil::~Derivedll
+fun: Derivedll::fun

II LINKOPING
@ UNIVERSITY

17/35

Polymorphism
Virtual Table

Base* bp{new Derived11{}};

vptr vtable for Base
Q +dtor: Base::~Base
+fun: Base::fun
bp D vall
B S vtable for Derivedl
ase val2 +dtor: Derivedi::-~Derivedl
Base +fun: Derived1l::fun
d vtable for Derivediil
Derivedl +dtor: Derlvedll: :~Derivedil
+fun: Derivedll::fun
Derived11

II LINKOPING
@ UNIVERSITY

18/35

Polymorphism

Run-time type information (RTTI)

® Each entry in the vtable contains information about the
dynamic type;
® This data is accessible with typeid.

struct Base { virtual ~Base() = default; };
struct Derivedl : public Base { };
struct Derived1l : public Derivedl { };
int main()
{
Base b;
Derivedl di, d2;
Derivedl1l di1;
cout << typeid(b).name() << endl;
cout << typeid(d1l).hash_code() << endl;
cout << (typeid(dl) == typeid(b)) << endl;
cout << (typeid(dl) == typeid(d2)) << endl;
cout << (typeid(dl) == typeid(dil)) << endl;

II LINKOPING
@ UNIVERSITY

19/35

Polymorphism
Run-time type information (RTTI)
® typeid is used to check the exact dynamic type;

® We can use dynamic_cast to cast pointers or
references to objects into some pointer or reference
which is compatible with the dynamic type of the
object.
struct Base { virtual ~Base() = default; };
struct Derivedl : public Base { };

struct Derived1l : public Derivedl { };
int main()

Base* bp{new Derivedl()};
cout << (dynamic_cast<Base*>(bp) == nullptr) << endl;
cout << (dynamic_cast<Derived11*>(bp) == nullptr) << endl;

}

II LINKOPING
@ UNIVERSITY

Polymorphism

Run-time type information (RTTI)

struct Base

{

virtual ~Base() = default;
;

struct Derivedl : public Base
int foo() { return 1; }

;
struct Derivedll : public Derivedl { };
int main()
{
Base* bp{new Derivedil()};
// won't work, since foo is a non-virtual function in Derived
cout << bp->foo() << endl;

cout << dynamic_cast<Derived1&>(*bp).foo() << endl;
// will throw an exception of type std::bad_cast
cout << dynamic_cast<Derived11&>(*bp).foo() << endl;

// will work, since we converted bp to Derived* which has access to foo

20/35

II LINKOPING
@ UNIVERSITY

21/35

Polymorphism

What will happen? Why?

struct Base { virtual ~Base() = default; };
struct Derivedl : public Base { };
struct Derived1l : public Derivedl { };
struct Derived2 : public Base { };
int main()
{
Base* bp{new Derivedi()};
if (dynamic_cast<Base*>(bp))
cout << "B ";
if (dynamic_cast<Derived1*>(bp))
cout << "D1 ";
if (dynamic_cast<Derivedi11*>(bp))
cout << "D11 ";
if (dynamic_cast<Derived2*>(bp))
cout << "D2 ";
}

II LINKOPING
@ UNIVERSITY

Polymorphism

Slicing

22/35

struct Base

virtual void print() {cout << x;}
int x{1};
;

struct Derived : public Base

void print() override {cout << y;}
int y{2};

’

void print(Base b)

b.print();

int main()

Derived d{};
print(d);

® Copying d into b will cause slicing;

® Will only copy the Base part of d and thus lose all
information about d being a Derived.

® Always use references or pointers!

II LINKOPING
@ UNIVERSITY

II LINKOPING
o UNIVERSITY

24/35

Exception Handling

Model

int main()

try void funi()
funi(); { /) void fun2()
/]
3 tgnz()' return;
catch (std::exception& e) I
cerr << e.what(); 3

II LINKOPING
@ UNIVERSITY

24/35

Exception Handling

Model

int main()

ERy | __—svoid funi()

funl();/ TE—
40 coc
I oo
fun2();
} /) return;
catch (std::exception& e) I

}

cerr << e.what();

II LINKOPING
@ UNIVERSITY

24/35

Exception Handling

Model

int main()

try | Bvoid funi()

{ -_____________—_____
. { i
funi(); yvoid fun2()
40 coc | —
I oo
} t?”z()F/ ¢ return;
catch (std::exception& e) I

}

cerr << e.what();

II LINKOPING
@ UNIVERSITY

24/35

Exception Handling

Model

int main()

try | Bvoid funi()

{ /
. { i
funi(); yvoid fun2()
40 coc | —
I oo
3 tgnZ()F:’_—{_return;
catch (std::exception& e) I

}

cerr << e.what();

II LINKOPING
@ UNIVERSITY

24/35

Exception Handling

Mode

int main()

ERy | __—svoid funi()

{ /
jgnl(); e /)void fun2()

' ““--._§___§-‘~ fun2();— | [0 o
e b

}
catch (std::exception& e) [
;

}

cerr << e.what();

II LINKOPING
@ UNIVERSITY

24/35

Exception Handling

Model

int main()

i void funi()

funi(); { 7/ void fun2()

v fun();
} /) ’ throw std::exception{""};
catch (std::exception& e) retﬁ}ﬁ-

cerr << e.what(); }

II LINKOPING
@ UNIVERSITY

24/35

Exception Handling

Model

int main()

Ery | __—svoid funi()
funi() ;/ 7 void fun2()
} S ()8 throw std::exception{""};
catch (std::exception& e) 70 ooc . '
o return;

}

cerr << e.what();

II LINKOPING
@ UNIVERSITY

24/35

Exception Handling

Model

int main()

Ery | __—svoid funi()
funl();/ bvoid fun2()
/ATy | —
} S funz();——”"’ throw std::exception{""};
catch (std::exception& e) 70 ooc . '
o return;

}

cerr << e.what();

II LINKOPING
@ UNIVERSITY

Exception Handling

Model

int main()

try

{ /
funi();
70 ooa

}
catch (std::exception& e)

}

pvoid funi()
{

/.
fun2();— |
Y
return;

24/35

yvoid fun2()

throw std::exception{""};—_]

II LINKOPING
@ UNIVERSITY

25/35

Exception Handling

Exceptions

® Anything can be thrown;

® however the language and the standard library throws
objects derived from std: :exception;

® there are several exception classes defined in
<stdexcept>,

¢ always throw by-value: don’t throw pointers;

® always catch by-reference to avoid slicing;

¢ if an exception isn’t caught std: : terminate will be
called, thus terminating the program immediately.

LINKOPING
II.“ UNIVERSITY

Exception Handling

Lifetime & Stack Unwinding

26/35

int foo()

int z{};
throw z;

struct Cls

{
Cls() try

+ y{foo()}
}
catch (int i)

cerr << i;
throw "cls error";

int y;
}

int main() try
int x{};
Cls c{};
70 oo

catch (char const* str)
cerr << str;

catch (std::exception& e)
cerr << e.what();

}

catch (...)

cerr << "Unknown error";

II LINKOPING
@ UNIVERSITY

Exception Handling

Exception usage

® Exceptions are very slow when they are thrown;
® should only be thrown in exceptional situations;

® don’t use exceptions for control flow, it will severely
slow down your program.

27/35

LINKOPING
II.“ UNIVERSITY

Exception Handling
noexcept
® Due to stack unwinding, the compiler have to generate
some extra code to handle exceptions;

® this extra generated code can be costly, especially if it is
not used;

® the noexcept-specifier tells the compiler that no
exceptions will be thrown from a function;

® declaring functions as noexcept will allow the compiler
to not generate code for exception handling.

28/35

LINKOPING
II.“ UNIVERSITY

29/35

Exception Handling

noexcept

void fun() noexcept;

LINKOPING
II.“ UNIVERSITY

Exception Handling

noexcept

void fun() noexcept;

e A function declared noexcept is allowed to call
throwing functions, as long as the exception is caught
before it reaches the noexcept function;

29/35

LINKOPING
II.“ UNIVERSITY

Exception Handling

noexcept

void fun() noexcept;

e A function declared noexcept is allowed to call
throwing functions, as long as the exception is caught
before it reaches the noexcept function;

¢ [f an exception is thrown inside a noexcept function,
std::terminate is called, thus aborting the program.

29/35

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

Smart Pointers

Exceptions and Memory Management

int* get(int x)
{

if (x < 0)
throw std::out_of_range{""};
return new int{x};

}

struct Cls

{
Cls(int x, int y) : datail{get(x)}, data2{get(y)} { }
~Cls()
{

delete datai;
delete data2;

int* datai;
int* data2;

+

31/35

II LINKOPING
@ UNIVERSITY

32/35

Smart Pointers

Exceptions and Memory Management

struct Cls
{
Cls(int x, int y) try
: datail{get(x)}, data2{get(y)}

{

}

catch (...)
delete datail;
throw;

}

~Cls()

{

delete datai;
delete data2;
}
int* datail;
int* data2;

}

II LINKOPING
@ UNIVERSITY

32/35

Smart Pointers

Exceptions and Memory Management

struct Cls
{
Cls(int x, int y) try
: datail{get(x)¥, data2{get(y)}

{

}

catch (...)
delete datail;
throw;

}

~Cls()

{

delete datai;
delete data2;
}
int* datail;
int* data2;

}

II LINKOPING
@ UNIVERSITY

33/35

Smart Pointers

Exceptions and Memory Management

struct Cls

Cls(int x, int y) : datail{get(x)}
{

try
data2 = get(y);
}
catch (...)
delete datail;
throw;
}
~Cls()
{
7l ooo
}
7Y soo
}

II LINKOPING
@ UNIVERSITY

33/35

Smart Pointers

Exceptions and Memory Management

struct Cls

Cls(int x, int y) : datail{get(x)}
{

try
data2 = get(y);
}
catch (...)
delete datail;
throw;
}
~Cls()
{
7l ooo
}
7Y soo
}

II LINKOPING
@ UNIVERSITY

34/35

Smart Pointers

Smart Pointers

Use RAIl to automatically handle memory;
reside in <memory>;

std: :unique_ptr

std::shared_ptr

LINKOPING
II.“ UNIVERSITY

Smart Pointers

Smart Pointers

Use RAIl to automatically handle memory;
reside in <memory>;
std::unique_ptr
® Represent ownership;
® each unique_ptr points to a unique object;
® when the pointer is destroyed, the object is
deallocated;
® cannot be copied, only moved.
® std::shared_ptr

34/35

LINKOPING
II.“ UNIVERSITY

Smart Pointers
Smart Pointers
® Use RAIl to automatically handle memory;

® reside in <memory>;
® std::unique_ptr

// hand off manually allocated memory
std::unique_ptr<int> ptri{new int{5}};

// let the smart pointer handle it
std::unique_ptr<int> ptr2{make_unique<int>(5)};
// move ptr2 to ptr3

std::unique_ptr<int> ptr3{std::move(ptr2)};

// ptr2 is now null

® std::shared_ptr

34/35

II LINKOPING
@ UNIVERSITY

Smart Pointers

Smart Pointers

® Use RAIl to automatically handle memory;
® reside in <memory>;
® std::unique_ptr
® std::shared_ptr
® Represent shared ownership on an object;
® Can be copied;
* Will deallocate the memory when all shared
pointers have been destroyed;
® Should be avoided if possible since it is quite
expensive.

34/35

LINKOPING
II.“ UNIVERSITY

34/35

Smart Pointers

Smart Pointers

Use RAIl to automatically handle memory;
reside in <memory>;

std::unique_ptr

std::shared_ptr

std::shared_ptr<int> ptri{new int{5}};
std::shared_ptr<int> ptr2{make_shared<int>(5)};
std::shared_ptr<int> ptr3{ptr2};

// both ptr2 and ptr3 point to the same object

// the object will be deallocated once both ptr2 and ptr3
// have been destroyed.

II LINKOPING
@ UNIVERSITY

35/35

Smart Pointers

Nice solution

std::unique_ptr<int> get(int x)

if (x < 0)
throw std::out_of_range{""};
return std::make_unique<int>(x);

}
struct Cls
{
Cls(int x, int y) : datal{get(x)}, data2{get(y)} { }
~Cls() = default;
std::unique_ptr<int> datal;
std::unique_ptr<int> data2;

+

II LINKOPING
@ UNIVERSITY

35/35

Smart Pointers

Nice solution

std::unique_ptr<int> get(int x)

if (x < 0)
throw std::out_of_range{"\'};
return std::make_unique<int>(X);

}
struct Cls
{
Cls(int x, int y) : datai{get(x)}, data2{get(y)} { }
~Cls() = default;
std::unique_ptr<int> datal;
std::unique_ptr<int> data2;

+

II LINKOPING
@ UNIVERSITY

II LINKOPING
o UNIVERSITY

www.liu.se

	Inheritance
	Polymorphism
	Exception Handling
	Smart Pointers

