
TDDD38/726G82 ‐
Advanced programming in
C++
Inheritance & Polymorphism

Christoffer Holm

Department of Computer and information science



1 Inheritance
2 Polymorphism
3 Exception Handling (Bonus)
4 Smart Pointers (Bonus)



1 Inheritance
2 Polymorphism
3 Exception Handling (Bonus)
4 Smart Pointers (Bonus)



3 / 35

Inheritance
Mental Model

class Employee
{
string name{"Christoffer"};
int id{44};

};
class Teacher : public Employee
{
string course{"TDDD38"};

};
Teacher c{};



3 / 35

Inheritance
Mental Model

class Employee
{
string name{"Christoffer"};
int id{44};

};
class Teacher : public Employee
{
string course{"TDDD38"};

};
Teacher c{};

name Christoffer

id 44

Employee

course TDDD38

Teacher



4 / 35

Inheritance
Protected members

class Base
{
public:
Base(int x)
: x{x} { }

private:
int x;

};

struct Derived : Base
{
Derived(int x)
: Base{x} { }

int get()
{
return x; // Error!

}
};



4 / 35

Inheritance
Protected members

class Base
{
public:
Base(int x)
: x{x} { }

protected:
int x;

};

struct Derived : Base
{
Derived(int x)
: Base{x} { }

int get()
{
return x; // OK!

}
};



5 / 35

Inheritance
Protected members

protectedmembers are:

‚ inaccessible outside the class;

‚ accessible within derived classes;

‚ accessible by friends of the class.



6 / 35

Inheritance
Constructors

class Base
{
public:
Base(int x);

private:
int x;

};

Base::Base(int x)
: x{x}

{
}

class Derived : public Base
{
public:
Derived(int x, double y);

private:
double y;

};

Derived::Derived(int x, double y)
: Base{x}, y{y}

{
}



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

Derived11



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

Derived1

Derived11



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

Base

Derived1

Derived11



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1

Base

Derived1

Derived11



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1

Base
y 2.34

Derived1

Derived11



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1

Base
y 2.34

Derived1

z 56

Derived11



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1

Base
y 2.34

Derived1

z 56



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1

Base
y 2.34

Derived1



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1

Base
y 2.34



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1

Base



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};

x 1



7 / 35

Inheritance
Initialization & Destruction

class Base
{
int x{1};

};
class Derived1 : public Base
{
double y{2.34};

};
class Derived11 final
: public Derived1

{
int z{56};

};

Derived11 obj{};



8 / 35

Inheritance
Initialization & Destruction

An object is initialized in the following order:

1. initialize base classes (call constructors);

2. initialize all data members in declaration order.

An object is destroyed in the following order:

1. destroy all data members in reverse order;

2. destroy base classes in reverse order.



9 / 35

Inheritance
Types of Inheritance

‚ public inheritance

‚ protected inheritance

‚ private inheritance



9 / 35

Inheritance
Types of Inheritance

‚ public inheritance

‚ class Derived : public Base

‚ All public and protected members of Base are
available as public and protected respectively in
Derived.

‚ protected inheritance

‚ private inheritance



9 / 35

Inheritance
Types of Inheritance

‚ public inheritance

‚ protected inheritance

‚ class Derived : protected Base

‚ All public and protected members of Base are
available as protected in Derived.

‚ private inheritance



9 / 35

Inheritance
Types of Inheritance

‚ public inheritance

‚ protected inheritance

‚ private inheritance

‚ class Derived : private Base

‚ All members of Base are inherited as private and
therefore inaccessible from Derived.



9 / 35

Inheritance
Types of Inheritance

‚ public inheritance

‚ protected inheritance

‚ private inheritance

struct has public access and inheritance by‐default while
class has private by‐default. This is their only difference.



10 / 35

Inheritance
What will happen? Why?

struct Base
{
~Base() { cout << "Base" << endl; }

};
struct Derived : public Base
{
~Derived() { cout << "Derived" << endl; }

};
int main()
{
Derived d{};

}



1 Inheritance
2 Polymorphism
3 Exception Handling (Bonus)
4 Smart Pointers (Bonus)



12 / 35

Polymorphism
Dynamic dispatch

void print1()
{ cout << "1" << endl; }

struct Base
{
Base() = default;
void print()
{
foo();

}

protected:
using function_t = void (*)();

Base(function_t foo)
: foo{foo} { }

private:
function_t foo{print1};

};

void print2()
{ cout << "2" << endl; }

struct Derived : public Base
{
// inherit constructors from Base
using Base::Base;
// override default constructor
Derived()
: Derived{print2} { }

};
int main()
{
Base* bp {new Base{}};
bp->print();
delete bp;

bp = new Derived{};
bp->print();

}



13 / 35

Polymorphism
Easier dynamic dispatch

struct Base
{
virtual void print()
{
cout << "1" << endl;

}
};

struct Derived : public Base
{
void print() override
{
cout << "2" << endl;

}
};

int main()
{
Base* bp {new Base{}};
bp->print();
delete bp;

bp = new Derived{};
bp->print();

}



14 / 35

Polymorphism
What will happen? Why?

struct Base
{
~Base() { cout << "Base" << endl; }

};
struct Derived : public Base
{
~Derived() { cout << "Derived" << endl; }

};
int main()
{
Base* bp{new Derived()};
delete bp;

}



14 / 35

Polymorphism
What will happen? Why?

struct Base
{
virtual ~Base() { cout << "Base" << endl; }

};
struct Derived : public Base
{
~Derived() { cout << "Derived" << endl; }

};
int main()
{
Base* bp{new Derived()};
delete bp;

}



15 / 35

Polymorphism
Virtual destructor

‚ bp is of type Base* (the static type of bp);

‚ deleting bp will call the destructor of Base regardless of
what the dynamic type of bp is;

‚ However, if the destructor of base is virtual the
compiler will use dynamic dispatch to call the overriden
destructor from Derived, which in turn will call the Base
destructor.

Therefore we should always declare destructors as virtual for
types which will be used through pointers.



16 / 35

Polymorphism
Virtual Table

struct Base
{
virtual ~Base();
virtual void fun();
int val1{1};
int val2{2};

};
struct Derived1 : public Base
{
void fun() override;
double d{3.4};

};
struct Derived11 : public Derived1
{
void fun() final;

};

void Base::fun()
{
cout << val1 << ' ' << val2;

}

void Derived1::fun()
{
Base::fun();
cout << ' ' << d;

}

void Derived11::fun()
{
cout << "Derived11 ";
Derived1::fun();

}



17 / 35

Polymorphism
Virtual Table

Base* bp{new Base{}};

vptr

val1 1

val2 2

Base

d 3.4

Derived1

Derived11

bp
Base *

vtable for Base
+dtor: Base::~Base
+fun: Base::fun

vtable for Derived1
+dtor: Derived1::~Derived1
+fun: Derived1::fun

vtable for Derived11
+dtor: Derived11::~Derived11
+fun: Derived11::fun



17 / 35

Polymorphism
Virtual Table

Base* bp{new Derived1{}};

vptr

val1 1

val2 2

Base

d 3.4

Derived1

Derived11

bp
Base *

vtable for Base
+dtor: Base::~Base
+fun: Base::fun

vtable for Derived1
+dtor: Derived1::~Derived1
+fun: Derived1::fun

vtable for Derived11
+dtor: Derived11::~Derived11
+fun: Derived11::fun



17 / 35

Polymorphism
Virtual Table

Base* bp{new Derived11{}};

vptr

val1 1

val2 2

Base

d 3.4

Derived1

Derived11

bp
Base *

vtable for Base
+dtor: Base::~Base
+fun: Base::fun

vtable for Derived1
+dtor: Derived1::~Derived1
+fun: Derived1::fun

vtable for Derived11
+dtor: Derived11::~Derived11
+fun: Derived11::fun



18 / 35

Polymorphism
Run‐time type information (RTTI)

‚ Each entry in the vtable contains information about the
dynamic type;

‚ This data is accessible with typeid.
struct Base { virtual ~Base() = default; };
struct Derived1 : public Base { };
struct Derived11 : public Derived1 { };
int main()
{
Base b;
Derived1 d1, d2;
Derived11 d11;
cout << typeid(b).name() << endl;
cout << typeid(d1).hash_code() << endl;
cout << (typeid(d1) == typeid(b)) << endl;
cout << (typeid(d1) == typeid(d2)) << endl;
cout << (typeid(d1) == typeid(d11)) << endl;

}



19 / 35

Polymorphism
Run‐time type information (RTTI)

‚ typeid is used to check the exact dynamic type;

‚ We can use dynamic_cast to cast pointers or references
to objects into some pointer or reference which is
compatible with the dynamic type of the object.

struct Base { virtual ~Base() = default; };
struct Derived1 : public Base { };
struct Derived11 : public Derived1 { };
int main()
{
Base* bp{new Derived1()};
cout << (dynamic_cast<Base*>(bp) == nullptr) << endl;
cout << (dynamic_cast<Derived11*>(bp) == nullptr) << endl;

}



20 / 35

Polymorphism
Run‐time type information (RTTI)

struct Base
{
virtual ~Base() = default;

};
struct Derived1 : public Base
{
int foo() { return 1; }

};
struct Derived11 : public Derived1 { };
int main()
{
Base* bp{new Derived1()};
// won't work, since foo is a non-virtual function in Derived
cout << bp->foo() << endl;
// will work, since we converted bp to Derived* which has access to foo
cout << dynamic_cast<Derived1&>(*bp).foo() << endl;
// will throw an exception of type std::bad_cast
cout << dynamic_cast<Derived11&>(*bp).foo() << endl;

}



21 / 35

Polymorphism
What will happen? Why?

struct Base { virtual ~Base() = default; };
struct Derived1 : public Base { };
struct Derived11 : public Derived1 { };
struct Derived2 : public Base { };
int main()
{
Base* bp{new Derived1()};
if (dynamic_cast<Base*>(bp))
cout << "B ";

if (dynamic_cast<Derived1*>(bp))
cout << "D1 ";

if (dynamic_cast<Derived11*>(bp))
cout << "D11 ";

if (dynamic_cast<Derived2*>(bp))
cout << "D2 ";

}



22 / 35

Polymorphism
Slicing

struct Base
{
virtual void print() {cout << x;}
int x{1};

};
struct Derived : public Base
{
void print() override {cout << y;}
int y{2};

};

void print(Base b)
{
b.print();

}

int main()
{
Derived d{};
print(d);

}

‚ Copying d into b will cause slicing;
‚ Will only copy the Base part of d and thus lose all

information about d being a Derived.
‚ Always use references or pointers!



1 Inheritance
2 Polymorphism
3 Exception Handling (Bonus)
4 Smart Pointers (Bonus)



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
return;

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}



24 / 35

Exception Handling
Model

int main()
{
try
{
fun1();
// ...

}
catch (std::exception& e)
{
cerr << e.what();

}
}

void fun1()
{
// ...
fun2();
// ...
return;

}

void fun2()
{
throw std::exception{""};

}



25 / 35

Exception Handling
Exceptions

‚ Anything can be thrown;
‚ however the language and the standard library throws

objects derived from std::exception;
‚ there are several exception classes defined in

<stdexcept>;
‚ always throw by‐value: don’t throw pointers;
‚ always catch by‐reference to avoid slicing;
‚ if an exception isn’t caught std::terminate will be

called, thus terminating the program immediately.



26 / 35

Exception Handling
Lifetime & Stack Unwinding

int foo()
{
int z{};
throw z;

}
struct Cls
{
Cls() try
: y{foo()}

{
}
catch (int i)
{
cerr << i;
throw "cls error";

}
int y;

};

int main() try
{
int x{};
Cls c{};
// ...

}
catch (char const* str)
{
cerr << str;

}
catch (std::exception& e)
{
cerr << e.what();

}
catch (...)
{
cerr << "Unknown error";

}



27 / 35

Exception Handling
Exception usage

‚ Exceptions are very slow when they are thrown;

‚ should only be thrown in exceptional situations;

‚ don’t use exceptions for control flow, it will severely
slow down your program.



28 / 35

Exception Handling
noexcept

‚ Due to stack unwinding, the compiler have to generate
some extra code to handle exceptions;

‚ this extra generated code can be costly, especially if it is
not used;

‚ the noexcept‐specifier tells the compiler that no
exceptions will be thrown from a function;

‚ declaring functions as noexcept will allow the compiler
to not generate code for exception handling.



29 / 35

Exception Handling
noexcept

void fun() noexcept;

‚ A function declared noexcept is allowed to call throwing
functions, as long as the exception is caught before it
reaches the noexcept function;

‚ If an exception is thrown inside a noexcept function,
std::terminate is called, thus aborting the program.



29 / 35

Exception Handling
noexcept

void fun() noexcept;

‚ A function declared noexcept is allowed to call throwing
functions, as long as the exception is caught before it
reaches the noexcept function;

‚ If an exception is thrown inside a noexcept function,
std::terminate is called, thus aborting the program.



29 / 35

Exception Handling
noexcept

void fun() noexcept;

‚ A function declared noexcept is allowed to call throwing
functions, as long as the exception is caught before it
reaches the noexcept function;

‚ If an exception is thrown inside a noexcept function,
std::terminate is called, thus aborting the program.



1 Inheritance
2 Polymorphism
3 Exception Handling (Bonus)
4 Smart Pointers (Bonus)



31 / 35

Smart Pointers
Exceptions and Memory Management

int* get(int x)
{

if (x < 0)
throw std::out_of_range{""};

return new int{x};
}
struct Cls
{
Cls(int x, int y) : data1{get(x)}, data2{get(y)} { }
~Cls()
{
delete data1;
delete data2;

}
int* data1;
int* data2;

};



32 / 35

Smart Pointers
Exceptions and Memory Management

struct Cls
{
Cls(int x, int y) try
: data1{get(x)}, data2{get(y)}

{
}
catch (...)
{
delete data1;
throw;

}
~Cls()
{
delete data1;
delete data2;

}
int* data1;
int* data2;

};



32 / 35

Smart Pointers
Exceptions and Memory Management

struct Cls
{
Cls(int x, int y) try
: data1{get(x)}, data2{get(y)}

{
}
catch (...)
{
delete data1;
throw;

}
~Cls()
{
delete data1;
delete data2;

}
int* data1;
int* data2;

};

Segmentation Fault



33 / 35

Smart Pointers
Exceptions and Memory Management

struct Cls
{
Cls(int x, int y) : data1{get(x)}
{
try
{
data2 = get(y);

}
catch (...)
{
delete data1;
throw;

}
}
~Cls()
{
// ...

}
// ...

};



33 / 35

Smart Pointers
Exceptions and Memory Management

struct Cls
{
Cls(int x, int y) : data1{get(x)}
{
try
{
data2 = get(y);

}
catch (...)
{
delete data1;
throw;

}
}
~Cls()
{
// ...

}
// ...

};

Painfully Tedious



34 / 35

Smart Pointers
Smart Pointers

‚ Use RAII to automatically handle memory;
‚ reside in <memory>;
‚ std::unique_ptr
‚ std::shared_ptr



34 / 35

Smart Pointers
Smart Pointers

‚ Use RAII to automatically handle memory;
‚ reside in <memory>;
‚ std::unique_ptr

‚ Represent ownership;
‚ each unique_ptr points to a unique object;
‚ when the pointer is destroyed, the object is

deallocated;
‚ cannot be copied, only moved.

‚ std::shared_ptr



34 / 35

Smart Pointers
Smart Pointers

‚ Use RAII to automatically handle memory;
‚ reside in <memory>;
‚ std::unique_ptr

// hand off manually allocated memory
std::unique_ptr<int> ptr1{new int{5}};
// let the smart pointer handle it
std::unique_ptr<int> ptr2{make_unique<int>(5)};
// move ptr2 to ptr3
std::unique_ptr<int> ptr3{std::move(ptr2)};
// ptr2 is now null

‚ std::shared_ptr



34 / 35

Smart Pointers
Smart Pointers

‚ Use RAII to automatically handle memory;
‚ reside in <memory>;
‚ std::unique_ptr
‚ std::shared_ptr

‚ Represent shared ownership on an object;
‚ Can be copied;
‚ Will deallocate the memory when all shared

pointers have been destroyed;
‚ Should be avoided if possible since it is quite

expensive.



34 / 35

Smart Pointers
Smart Pointers

‚ Use RAII to automatically handle memory;
‚ reside in <memory>;
‚ std::unique_ptr
‚ std::shared_ptr

std::shared_ptr<int> ptr1{new int{5}};
std::shared_ptr<int> ptr2{make_shared<int>(5)};
std::shared_ptr<int> ptr3{ptr2};
// both ptr2 and ptr3 point to the same object
// the object will be deallocated once both ptr2 and ptr3
// have been destroyed.



35 / 35

Smart Pointers
Nice solution

std::unique_ptr<int> get(int x)
{

if (x < 0)
throw std::out_of_range{""};

return std::make_unique<int>(x);
}
struct Cls
{
Cls(int x, int y) : data1{get(x)}, data2{get(y)} { }
~Cls() = default;
std::unique_ptr<int> data1;
std::unique_ptr<int> data2;

};



35 / 35

Smart Pointers
Nice solution

std::unique_ptr<int> get(int x)
{

if (x < 0)
throw std::out_of_range{""};

return std::make_unique<int>(x);
}
struct Cls
{
Cls(int x, int y) : data1{get(x)}, data2{get(y)} { }
~Cls() = default;
std::unique_ptr<int> data1;
std::unique_ptr<int> data2;

};

Perfection!



www.liu.se

www.liu.se

	Inheritance
	Polymorphism
	Exception Handling (Bonus)
	Smart Pointers (Bonus)

