
TDDD38/726G82 ‐
Advanced programming in
C++
Class design

Christoffer Holm

Department of Computer and information science

1 References & const
2 Classes
3 Lifetime Management
4 Operator Overloading
5 Aggregates (Bonus)

1 References & const
2 Classes
3 Lifetime Management
4 Operator Overloading
5 Aggregates (Bonus)

3 / 47

References & const
const

int x { 5 };
int const y { 7 };
int const* v { &x };
int* const w { &x };

x = 7; // allowed
y = 5; // not allowed

v = &y; // allowed
w = &y; // not allowed

*v = 8; // not allowed
*w = 10; // allowed

4 / 47

References & const
const

‚ A variable declared const cannot be modified after
initialization

‚ A pointer to a const object can be modified, but it
cannot modify the underlying object

‚ A const pointer cannot change what they point to

‚ A non‐const object can be converted to a const
version, but not vice versa.

5 / 47

References & const
const

Rule of thumb: const applies to the left:

int const * const

5 / 47

References & const
const

Rule of thumb: const applies to the left:

int const * const

5 / 47

References & const
const

Rule of thumb: const applies to the left:

int const * const

6 / 47

References & const
const

... Except when it’s at the start:

const int

6 / 47

References & const
const

... Except when it’s at the start:

const int

7 / 47

References & const
Value categories & References

Given some type T, there are four different references;

‚ T&

‚ T const&

‚ T&&

‚ T const&&

7 / 47

References & const
Value categories & References

Given some type T, there are four different references;

‚ T&

‚ Called lvalue‐reference;
‚ Used to alias existing object;
‚ Can only bind to lvalues.

‚ T const&

‚ T&&

‚ T const&&

7 / 47

References & const
Value categories & References

Given some type T, there are four different references;

‚ T&

‚ T const&

‚ Called const lvalue‐reference;
‚ Can bind to all const objects;
‚ can bind to all non‐const objects.

‚ T&&

‚ T const&&

7 / 47

References & const
Value categories & References

Given some type T, there are four different references;

‚ T&

‚ T const&

‚ T&&

‚ Called rvalue‐reference;
‚ Used to extend the lifetime of temporary objects;
‚ Binds to all rvalues turning them into xvalue.

‚ T const&&

7 / 47

References & const
Value categories & References

Given some type T, there are four different references;

‚ T&

‚ T const&

‚ T&&

‚ T const&&

‚ Called const rvalue‐reference;
‚ Is a weaker version of const lvalue‐reference;
‚ can only bind to rvalues that are const.

8 / 47

References & const
What will happen? Why?

void fun(int const&) { cout << 1; }
void fun(int&) { cout << 2; }
void fun(int&&) { cout << 3; }

int main()
{
int a;
int const c{};
fun(23);
fun(a);
fun(c);

}

1 References & const
2 Classes
3 Lifetime Management
4 Operator Overloading
5 Aggregates (Bonus)

10 / 47

Classes
The Anatomy of a Class Declaration

‚ Declared with either class or struct;
‚ Has data members;
‚ Has member functions;
‚ Each member has an access level.

10 / 47

Classes
The Anatomy of a Class Declaration

‚ Declared with either class or struct;

class My_Class
{
};

struct My_Struct
{
};

‚ Has data members;
‚ Has member functions;
‚ Each member has an access level.

10 / 47

Classes
The Anatomy of a Class Declaration

‚ Declared with either class or struct;
‚ class and struct only have minor differences;
‚ All members in a class are by default private;
‚ All members in a struct are by default public;
‚ Inheritance has respective access level.

‚ Has data members;
‚ Has member functions;
‚ Each member has an access level.

10 / 47

Classes
The Anatomy of a Class Declaration

‚ Declared with either class or struct;
‚ Has data members;

class Cls
{
int number;
std::string text;

};

‚ Has member functions;
‚ Each member has an access level.

10 / 47

Classes
The Anatomy of a Class Declaration

‚ Declared with either class or struct;
‚ Has data members;
‚ Has member functions;

class Cls
{
void foo(int);
void foo(double);
void foo();

};

‚ Each member has an access level.

10 / 47

Classes
The Anatomy of a Class Declaration

‚ Declared with either class or struct;
‚ Has data members;
‚ Has member functions;
‚ Each member has an access level.

class Cls
{
public:
void foo(int);

private:
int number;

};

11 / 47

Classes
Class Scope

‚ Each class defines its own scope;

‚ All members belong to said scope;

‚ The name of the members can be access with the scope
resolution operator ::

12 / 47

Classes
Class Scope

// class declaration
class Cls;

// class definition
class Cls
{
public:
// member function declaration
void foo();

};

// member function definition
void Cls::foo() { cout << "foo" << endl; }

13 / 47

Classes
The Object Model

‚ Each class in C++ defines a type;

‚ Values/expressions with this type are called objects;

‚ Creating an object of a class type is called instantiation.

14 / 47

Classes
The Object Model

class Cls
{
public:
void set(int n) {
num = n;

}
int get() {
return num;

}
private:
int num;

};

int main()
{
Cls o1;
Cls o2;

o1.set(1);
o2.set(2);

cout << o1.get() << ' '
<< o2.get()
<< endl;

}

14 / 47

Classes
The Object Model

class Cls
{
public:
void set(int n) {
this->num = n;

}
int get() {
return this->num;

}
private:
int num;

};

int main()
{
Cls o1;
Cls o2;

o1.set(1);
o2.set(2);

cout << o1.get() << ' '
<< o2.get()
<< endl;

}

15 / 47

Classes
Mental Model

// What we write
class Cls
{
public:
void set(int n);

private:
int num;

};
int main()
{
Cls obj;
obj.set(5);

}

15 / 47

Classes
Mental Model

// What we write
class Cls
{
public:
void set(int n);

private:
int num;

};
int main()
{
Cls obj;
obj.set(5);

}

// What we "think"
struct Cls
{
int num;

};
void set(Cls* this,

int n);

int main()
{
Cls obj;
set(&obj, 5);

}

16 / 47

Classes
Constant Member Functions

class Cls
{
public:
void fun() const;

private:
int data;

};
void Cls::fun() const
{
// not allowed
data = 5;

}

17 / 47

Classes
Constant Member Functions & Mental Model

// What we write
class Cls
{
public:
void fun() const;

private:
int data;

};
void Cls::fun() const
{
// not allowed
data = 5;

}

// What we "think"
struct Cls
{
int data;

};

void fun(Cls const* this)
{
// not allowed
this->data = 5;

}

18 / 47

Classes
Ref‐qualifiers

class Cls
{
public:
void fun() &;
void fun() &&;
void fun() const&;

};

‚ indicate what type of object
this is;

‚ pointers can only point to
glvalues;

‚ mental model breaks down.

18 / 47

Classes
Ref‐qualifiers

class Cls
{
public:
void fun() &;
void fun() &&;
void fun() const&;

};

struct Cls
{

};
void fun(Cls& this);
void fun(Cls&& this);
void fun(Cls const& this);

18 / 47

Classes
Ref‐qualifiers

class Cls
{
public:
void fun() &;
void fun() &&;
void fun() const&;

};

Cls c1{};
c1.fun();

Cls{}.fun();

Cls const c2{};
c2.fun();

1 References & const
2 Classes
3 Lifetime Management
4 Operator Overloading
5 Aggregates (Bonus)

20 / 47

Lifetime Management
Constructors

class Cls
{
public:
Cls(int a) : val1{a}, val3{2}
{
// can execute code here as well

}
private:
int val1;
int val2 {2+3};
int val3 {4};

};

21 / 47

Lifetime Management
Constructors

‚ The constructor is called whenever we create an object

‚ Initialization of data members happen before we
actually execute the body of the constructor

‚ This is done in the member‐initializer‐list (See the things
after : but before the body of the constructor)

‚ All data members that are initialized must be initialized
in‐order

22 / 47

Lifetime Management
Constructors

int main()
{
Cls obj1{5};
Cls obj2(5);
Cls* ptr{new Cls{5}}; // heap allocation
Cls{5}; // prvalue

}

23 / 47

Lifetime Management
Constructors

‚ Avoid initializing members in the body of the
constructor;

‚ const‐members must be initialized in the
member‐initializer‐list;

‚ Initializing in the body is an assignment.

24 / 47

Lifetime Management
Destructors

class Cls
{
public:
Cls(int x = 0) : data{new int{x}} { }
~Cls()
{
delete data;

}
private:
int* data;

};

25 / 47

Lifetime Management
Destructors

Cls global{0}; // static storage
void fun()
{
static Cls other{1}; // static storage
Cls cls{2};

}
int main()
{
Cls c{3};
fun();
c.~Cls(); // don't do this

}

26 / 47

Lifetime Management
Destructors

‚ Objects that have static storage are destroyed at the
end of the program.

‚ Global variables are created at the start of the program,

‚ Static variables in functions are constructed the first
time that function is called and will persist between all
future calls.

27 / 47

Lifetime Management
Destructors

‚ Even though destructors can be called explicitly it should
be avoided:

‚ Once the lifetime ends the destructor will be called
automatically by the compiler;

‚ Meaning, if you have called it yourself before that point
the destructor will be called twice which will (in most
cases) cause issues.

28 / 47

Lifetime Management
Special Member Functions

class Cls
{
public:
Cls(); // default constructor
Cls(Cls const&); // copy constructor
Cls(Cls&&); // move constructor

~Cls(); // destructor

Cls& operator=(Cls const&); // copy assignment
Cls& operator=(Cls&&); // move assignment

};

29 / 47

Lifetime Management
Special Member Functions

The compiler can generate these functions, unless:

‚ a constructor declared; no default constructor

‚ copy operations declared; no move operations

‚ move operations declared; no copy operations

‚ Possible to bypass these rules with =default and
=delete.

29 / 47

Lifetime Management
Special Member Functions

The compiler can generate these functions, unless:

‚ a constructor declared; no default constructor

‚ copy operations declared; no move operations

‚ move operations declared; no copy operations

‚ Possible to bypass these rules with =default and
=delete.

30 / 47

Lifetime Management
Rule of N

‚ rule of three

‚ rule of five

‚ rule of zero

30 / 47

Lifetime Management
Rule of N

‚ rule of three

‚ Before C++11 (Note this concept is not valid in
C++11 or later);

‚ If a class require a destructor or copy operation;

‚ it should (probably) implement the destructor, copy
constructor and copy assignment.

‚ rule of five

‚ rule of zero

30 / 47

Lifetime Management
Rule of N

‚ rule of three

‚ rule of five

‚ C++11 and onwards;

‚ If a class requires a destructor, copy or move
operations;

‚ it should implement a destructor, copy operations
and move operations.

‚ rule of zero

30 / 47

Lifetime Management
Rule of N

‚ rule of three

‚ rule of five

‚ rule of zero

‚ If all resources used in the class take care of their
own data;

‚ the class should not have to implement any
destructor, copy or move operations.

31 / 47

Lifetime Management
Special Member Functions

class Cls
{
public:
Cls(int); // remove default ctor
Cls() = default; // generate it anyway
Cls(Cls const&) = delete;// remove copy ctor
Cls(Cls&&) = default; // generate move ctor

};

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

Copy ctor

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

Copy ctor

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

Copy ctor
Move ctor

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

Copy ctor
Move ctor

Move assign

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

Copy ctor
Move ctor

Move assign

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

Copy ctor
Move ctor

Move assign

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

} Copy assign

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

32 / 47

Lifetime Management
Special Member Functions

Cls identity(Cls obj)
{
return obj;

}
int main()
{
Cls obj1{};
Cls obj2 = Cls{};
obj1 = identity(obj1);
obj1 = obj2;

}

33 / 47

Lifetime Management
As if rule

‚ The compiler is allowed to modify the code however it
want;

‚ As long as the observable behaviour is exactly the same.

‚ Copy elision is an exception to the as if rule;

‚ it allows the compiler to remove calls to copy or move
constructors.

33 / 47

Lifetime Management
As if rule

‚ The compiler is allowed to modify the code however it
want;

‚ As long as the observable behaviour is exactly the same.

‚ Copy elision is an exception to the as if rule;

‚ it allows the compiler to remove calls to copy or move
constructors.

34 / 47

Lifetime Management
Copy elision

int main()
{

Cls t1{};
Cls t2{t1};
Cls t3{Cls{}};

}

35 / 47

Lifetime Management
What will happen? Why?

struct Cls
{
Cls() = default;
Cls(Cls const&) { cout << "C"; }
Cls(Cls&&) { cout << "M"; }
~Cls() = default;

};

Cls ident(Cls c)
{
return c;

}

int main()
{
Cls c1{Cls{}};
Cls c2{ident(c1)};
Cls c3{c2};

}

1 References & const
2 Classes
3 Lifetime Management
4 Operator Overloading
5 Aggregates (Bonus)

37 / 47

Operator Overloading
Operators

‚ Most operators can be overloaded;

‚ the exceptions are . .* :: ?:

38 / 47

Operator Overloading
Binary operators

‚ Given any binary operator @;

‚ x@y becomes x.operator@(y) or operator@(x,y).

38 / 47

Operator Overloading
Binary operators

‚ Given any binary operator @;

‚ x@y becomes x.operator@(y) or operator@(x,y).

‚ Example:
struct Cls
{
Cls operator+(Cls b);

};
int main()
{
Cls a, b;
Cls c{a+b};

}

38 / 47

Operator Overloading
Binary operators

‚ Given any binary operator @;

‚ x@y becomes x.operator@(y) or operator@(x,y).

‚ Example:
struct Cls
{
Cls operator+(Cls b);

};
int main()
{
Cls a, b;
Cls c{a.operator+(b)};

}

38 / 47

Operator Overloading
Binary operators

‚ Given any binary operator @;

‚ x@y becomes x.operator@(y) or operator@(x,y).

‚ Example:
struct Cls
{
};
Cls operator+(Cls a, Cls b);
int main()
{
Cls a, b;
Cls c{a+b};

}

38 / 47

Operator Overloading
Binary operators

‚ Given any binary operator @;

‚ x@y becomes x.operator@(y) or operator@(x,y).

‚ Example:
struct Cls
{
};
Cls operator+(Cls a, Cls b);
int main()
{
Cls a, b;
Cls c{operator+(a, b)};

}

39 / 47

Operator Overloading
Rule of thumb

‚ Do I need this operator?

‚ What is the operators behaviour?

39 / 47

Operator Overloading
Rule of thumb

‚ Do I need this operator?
The operator should make sense. If there is any
ambiguity then don’t make an operator overload.

‚ What is the operators behaviour?

39 / 47

Operator Overloading
Rule of thumb

‚ Do I need this operator?
The operator should make sense. If there is any
ambiguity then don’t make an operator overload.

‚ What is the operators behaviour?
Should be similar to the built in types. The behaviour
should be as predictable as possible.

40 / 47

Operator Overloading
Type conversions

class Cls
{
public:
Cls(int i) : i{i} { }
operator int() const
{
return i;

}
private:
int i;

};

41 / 47

Operator Overloading
Type conversions

‚ A constructor that can take one argument is called a
type converting constructor;

‚ these constructors can be used by the compiler to
perform conversions.

‚ The special operator Cls::operator TYPE() is called
whenever the class Cls is converted to TYPE;

‚ the compiler is allowed to use this operator to perform
implicit type conversions;

‚ but can also be explicitly called through casting.

42 / 47

Operator Overloading
Explicit keyword

class Cls
{
public:
explicit Cls(int i) : i{i} { }
explicit operator int() const
{
return i;

}
private:
int i;

};

43 / 47

Operator Overloading
Explicit keyword

‚ Declaring type converting constructors or operators as
explicitmeans;

‚ the compiler is not allowed to use these functions for
implicit type conversion;

‚ with the exception of operator bool which can be used
for contextual conversion.

44 / 47

Operator Overloading
Contextual Conversion

struct Cls
{
explicit operator bool() const { return flag; }
bool flag{};

};
int main()
{
Cls c{};
if (c)
{
// ...

}
}

1 References & const
2 Classes
3 Lifetime Management
4 Operator Overloading
5 Aggregates (Bonus)

46 / 47

Aggregates
What is an Aggregate?

An aggregate denotes a simple kind of data type with the
following properties;

‚ An array‐ or class type;

‚ no user‐provided constructors;

‚ no private or static data members;

‚ no virtual functions;

‚ no private base classes.

47 / 47

Aggregates
Basic Aggregate

struct Person
{
string name{"unknown"};
int age{};

};

int main()
{
Person bob{"Bob", 37};
Person robin{"Robin"};
Person unknown{};
Person sara{.name = "Sara", .age = 29};// C++20

}

www.liu.se

www.liu.se

	References & const
	Classes
	Lifetime Management
	Operator Overloading
	Aggregates (Bonus)

