TDDD38/726G82 -

Advanced programming in
C++

Class design
Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY

ua b wOUN R

References & const
Classes

Lifetime Management
Operator Overloading
Aggregates (Bonus)

II LINKOPING
o UNIVERSITY

3/47

References & const

const

int x { 5 };

int const y { 7 };
int const* v { &x };
int* const w { &x };

x = 7; // allowed

y = 5; // not allowed
v = &y; // allowed

w = &y; // not allowed
*v = 8; // not allowed
*w = 10; // allowed

LINKOPING
II.“ UNIVERSITY

4/47

References & const

const

A variable declared const cannot be modified after
initialization

® A pointer to a const object can be modified, but it
cannot modify the underlying object

A const pointer cannot change what they point to

® A non-const object can be converted to a const
version, but not vice versa.

LINKOPING
II.“ UNIVERSITY

5/47

References & const

const

Rule of thumb: const applies to the left:

int const * const

LINKOPING
II.“ UNIVERSITY

5/47

References & const

const

Rule of thumb: const applies to the left:

int const * const
~__J

LINKOPING
II.“ UNIVERSITY

5/47

References & const

const

Rule of thumb: const applies to the left:

int const * const
R)

LINKOPING
II.“ UNIVERSITY

6/47

References & const

const

... Except when it’s at the start:

const int

LINKOPING
II.“ UNIVERSITY

6/47

References & const

const

... Except when it’s at the start:

const int
N

LINKOPING
II.“ UNIVERSITY

7/47

References & const

Value categories & References

Given some type T, there are four different references;
* T&
® T const&
® T&&

® T const&&

LINKOPING
II.“ UNIVERSITY

7/47

References & const
Value categories & References
Given some type T, there are four different references;
® T&

® Called Ivalue-reference;
® Used to alias existing object;
® Can only bind to Ivalues.

® T const&
® T&&

® T const&&

LINKOPING
II.“ UNIVERSITY

7/47

References & const
Value categories & References
Given some type T, there are four different references;
® T&
® T const&

® Called const Ivalue-reference;
® Can bind to all const objects;
® can bind to all non-const objects.

® T&&

® T const&&

LINKOPING
II.“ UNIVERSITY

7/47

References & const
Value categories & References
Given some type T, there are four different references;
® T&
® T const&
® T&&

® Called rvalue-reference;
® Used to extend the lifetime of temporary objects;
® Binds to all rvalues turning them into xvalue.

® T const&&

LINKOPING
II.“ UNIVERSITY

7/47

References & const
Value categories & References
Given some type T, there are four different references;
® T&
® T const&
® T&&

® T const&&

Called const rvalue-reference;
Is a weaker version of const Ivalue-reference;
can only bind to rvalues that are const.

II LINKOPING
o UNIVERSITY

8/47

References & const

What will happen? Why?

void fun(int const&) { cout << 1; }
void fun(int&) { cout << 2; }
void fun(inté&&) { cout << 3; }

int main()
{
int a;
int const c{};
fun(23);
fun(a);
fun(c);

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

10/47

Classes

The Anatomy of a Class Declaration

Declared with either class or struct;

Has data members;

Has member functions;

Each member has an access level.

II LINKOPING
o UNIVERSITY

10/47

Classes

The Anatomy of a Class Declaration

® Declared with either class or struct;

class My_Class struct My_Struct
{ {
} i

® Has data members;
® Has member functions;
® Each member has an access level.

LINKOPING
II.“ UNIVERSITY

10/47

Classes

The Anatomy of a Class Declaration

Declared with either class or struct;
® class and struct only have minor differences;
® All members in a class are by default private;
® All membersin a struct are by default public;
® Inheritance has respective access level.

Has data members;

Has member functions;

Each member has an access level.

II LINKOPING
o UNIVERSITY

10/47
Classes
The Anatomy of a Class Declaration

® Declared with either class or struct;
® Has data members;

class Cls

{

int number;
std::string text;

bE

® Has member functions;
® Each member has an access level.

II LINKOPING
o UNIVERSITY

10/47

Classes
The Anatomy of a Class Declaration

® Declared with either class or struct;
® Has data members;

® Has member functions;

class Cls

{
void foo(int);
void foo(double);
void foo();

}i

® Fach member has an access level.

LINKOPING
II.“ UNIVERSITY

10/47

Classes

The Anatomy of a Class Declaration

Declared with either class or struct;
® Has data members;

Has member functions;

Each member has an access level.

class Cls
{
public:

void foo(int);
private:

int number;

}i

II LINKOPING
o UNIVERSITY

11/47

Classes

Class Scope

® Each class defines its own scope;
® All members belong to said scope;

® The name of the members can be access with the scope
resolution operator : :

II LINKOPING
o UNIVERSITY

Classes

Class Scope

// class declaration
class Cls;

// class definition
class Cls
{
public:
// member function declaration
void foo();

i

// member function definition
void Cls::foo() { cout << "foo" << endl; }

12/47

LINKOPING
II." UNIVERSITY

13/47

Classes

The Object Model

® Each class in C++ defines a type;
¢ Values/expressions with this type are called objects;

® Creating an object of a class type is called instantiation.

LINKOPING
II.“ UNIVERSITY

Classes

The Object Model

14/47

class Cls
{
public:
void set(int n) {
num = n;
}
int get() {
return num;
}
private:
int num;

35

int main()

{

Cls o1;

Cls o02;

ol.set(1);

02.set(2);

cout << ol.get() << '
<< 02.get()
<< endl;

LINKOPING
II.“ UNIVERSITY

Classes

The Object Model

14/47

class Cls
{
public:
void set(int n) {
this->num = n;
3
int get() {
return this->num;
3
private:
int num;

35

int main()

{

Cls o1;
Cls o02;

ol.set(1);
02.set(2);

cout << ol.get() << '
<< 02.get()
<< endl;

LINKOPING
II.“ UNIVERSITY

Classes

Mental Model

// What we write
class Cls
{
public:
void set(int n);
private:
int num;
3
int main()
{
Cls obj;
obj.set(5);

}

15/47

LINKOPING
II.“ UNIVERSITY

15/47

Classes

Mental Model

// What we write // What we "think"

class Cls struct Cls

{ {

public: int num;
void set(int n); };

private: void set(Cls* this,
int num; int n);

3

int main() int main()

{ {
Cls obj; Cls obj;
obj.set(5); set(&obj, 5);

} 3

LINKOPING
II.“ UNIVERSITY

16/47

Classes

Constant Member Functions

class Cls
{
public:
void fun() const;
private:
int data;
3
void Cls::fun() const
{
// not allowed
data = 5;

}

LINKOPING
II.“ UNIVERSITY

Classes

Constant Member Functions & Mental Model

17/47

// What we write
class Cls
{
public:
void fun() const;
private:
int data;
¥
void Cls::fun() const
{
// not allowed
data = 5;
}

// What we "think"

struct Cls
{

int data;
}i

void fun(Cls const* this)
{
// not allowed
this->data = 5;
}

LINKOPING
II.“ UNIVERSITY

18/47

Classes

Ref-qualifiers

class Cls
{ ¢ indicate what type of object
public: thisis;

void fun() &; °

ointers can only point to
void fun() &&; P ye

void fun() consté&; glvalues;
3 ®* mental model breaks down.

LINKOPING
II.“ UNIVERSITY

18/47

Classes

Ref-qualifiers

class Cls struct Cls
{ {
public:
void fun() &; };
void fun() &&; void fun(Cls& this);
void fun() consté&; void fun(Cls&& this);
}; void fun(Cls const& this);

LINKOPING
II.“ UNIVERSITY

Classes

Ref-qualifiers

18/47

class Cls
{
public:

void fun() &;

void fun() &&;

void fun() consté&;

35

Cls ci{};
cl.fun();

Cls{}.fun();

Cls const c2{};
c2.fun();

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

Lifetime Management

Constructors

class Cls
{
public:

Cls(int a) : vali{a}, val3{2}

{

// can execute code here as well

}
private:

int vali;

int val2 {2+3};

int val3 {4};
Ve

20/47

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Constructors

® The constructor is called whenever we create an object

® |nitialization of data members happen before we
actually execute the body of the constructor

® This is done in the member-initializer-list (See the things
after : but before the body of the constructor)

® All data members that are initialized must be initialized
in-order

21/47

LINKOPING
II.“ UNIVERSITY

22/47

Lifetime Management

Constructors

int main()
{
Cls obj1{5};
Cls obj2(5);
Cls* ptr{new Cls{5}}; // heap allocation
Cls{5}; // prvalue

LINKOPING
II.“ UNIVERSITY

23/47

Lifetime Management

Constructors

® Avoid initializing members in the body of the
constructor;

® const-members must be initialized in the
member-initializer-list;

® |nitializing in the body is an assignment.

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Destructors

class Cls
{
public:

Cls(int x = @) : data{new int{x}} { }

~Cls()

{

delete data;

}
private:

int* data;

}r

24/47

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Destructors

Cls global{e}; // static storage

void fun()

{
static Cls other{1}; // static storage
Cls cls{2};

}

int main()

Cls c{3};
fun();
c.~Cls(); // don't do this

}

25/47

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Destructors

® Objects that have static storage are destroyed at the
end of the program.

® Global variables are created at the start of the program,

® Static variables in functions are constructed the first
time that function is called and will persist between all
future calls.

26/47

LINKOPING
II.“ UNIVERSITY

27/47

Lifetime Management

Destructors

® Even though destructors can be called explicitly it should
be avoided:

® Once the lifetime ends the destructor will be called
automatically by the compiler;

® Meaning, if you have called it yourself before that point
the destructor will be called twice which will (in most
cases) cause issues.

LINKOPING
II.“ UNIVERSITY

28/47

Lifetime Management

Special Member Functions

class Cls
{
public:
Cls(); // default constructor
Cls(Cls const&); // copy constructor
Cls(Cls&&); // move constructor

~Cls(); // destructor

Cls& operator=(Cls const&); // copy assignment
Cls& operator=(Cls&&); // move assignment

}

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Special Member Functions

The compiler can generate these functions, unless:
® 3 constructor declared; no default constructor
® copy operations declared; no move operations

® move operations declared; no copy operations

29/47

LINKOPING
II.“ UNIVERSITY

29/47

Lifetime Management

Special Member Functions

The compiler can generate these functions, unless:
® 3 constructor declared; no default constructor
® copy operations declared; no move operations
® move operations declared; no copy operations

® Possible to bypass these rules with =default and
=delete.

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Rule of N

® rule of three
® rule of five

® rule of zero

30/47

LINKOPING
II.“ UNIVERSITY

Lifetime Management
Rule of N
® rule of three

¢ Before C++11 (Note this concept is not valid in
C++11 or later);

¢ |f a class require a destructor or copy operation;

¢ it should (probably) implement the destructor, copy
constructor and copy assignment.

® rule of five

® rule of zero

30/47

LINKOPING
II.“ UNIVERSITY

Lifetime Management
Rule of N
¢ rule of three
® rule of five
® C++11 and onwards;

¢ |f a class requires a destructor, copy or move
operations;

® it should implement a destructor, copy operations
and move operations.

® rule of zero

30/47

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Rule of N

® rule of three
® rule of five

® rule of zero

e |f all resources used in the class take care of their
own data;

¢ the class should not have to implement any
destructor, copy or move operations.

30/47

LINKOPING
II.“ UNIVERSITY

31/47

Lifetime Management

Special Member Functions

class Cls

{

public:
Cls(int); // remove default ctor
Cls() = default; // generate it anyway
Cls(Cls const&) = delete;// remove copy ctor
Cls(Cls&&) = default; // generate move ctor

+i

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls obj)
{

return obj;
}

int main()

{

Cls obji1{};

Cls obj2 = Cls{};

obj1l = identity(obj1);
obj1l = obj2;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls obj)
{

return obj;
}

int main()

{

Cls [obTI(};

Cls obj2 = Cls{};

obj1l = identity(obj1);
obj1l = obj2;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls obj)
{

return obj;
}

int main()

{

Cls |obj1{};

Cls |obj2| = Cls{};

obj1l = identity(obj1);
obj1l = obj2;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls obj)
{

return obj;
}

int main()

{

Cls obji1{};
Cls obj2 = Cls{};

objl = identity(obji1);

obj1l = obj2;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls
{

return obj;
}

int main()

{

ob3

Copy ctor

Cls obji1{};

Cls obj2 = Cls{};
obj1l = identity(obji}f;
obj1l = obj2;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls

ob3

int main() Copy ctor

{
Cls obji1{};
Cls obj2 = Cls{};
obj1l = identity(obji}f;
obj1l = obj2;

LINKOPING
II.“ UNIVERSITY

Lifetime Management

Special

Member Functions

{

Cls identity(Cls

int main()

ob3

Copy ctor
Move ctor

Cls obji{3};

Cls obj2 = £l1s{};
objl =[identity|lobj1];
obj1l = obj2;

32/47

LINKOPING
UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls

ob3

int main() Copy ctor

{

Move ctor

Cls obji1{};
Cls obj2 = Lls{},;
[obj1] = [identity|(obj1];
objl_= objZ;

} Moveassign

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls

ob3

int main() Copy ctor

{

Move ctor

Cls obji1{};
Cls obj2 = Lls{};
[obj1] = [Identity(lobjl);
objl_= objZ;

} Moveassign

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

int main() Copy ctor

{

Move ctor

Cls obji1{};
Cls obj2 = Lls{};
[obj1] = [Identity(lobjl);
objl_= objZ;

} Moveassign

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls pbg)
{

return obg;
}

int main()

{

Cls obji1{};

Cls obj2 = Cls{};

objl = Idemtity(objl);
obj1 = [ob12)

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls pbg)
{

}

int main()

{

return obg;

Cls obji1{};
Cls obj2 = Cls{};
objl = Idtertity(objl);
obj1j<=obj2}
} Copy assign

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls pbg)
{

}

int main()

{

return obg;

Cls obji1{};

Cls obj2 = Cls{};

objl = Idemtity(objl);
obj1 obj2;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls pbg)
{

return obg;
}

int main()

{

Cls obji1{};
Cls pb32Z = Cls{};

obj1 i ity(objl);
objl = Db32;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls pbg)

{
return obg;

}

int main()

{
Cls pbsr{};
Cls ob32Z = Cls{};
DhFL = Identity(DbiL);
Db3L = Db3Z;

LINKOPING
II.“ UNIVERSITY

32/47

Lifetime Management

Special Member Functions

Cls identity(Cls pbg)
{

return obg;
}

int main()

{

Cls pbsx{};

Cls pDb52Z = Cls{};
DBIT = TeAtity(DBII);
Db = Db3Z;

}

LINKOPING
II.“ UNIVERSITY

33/47

Lifetime Management

As if rule

® The compiler is allowed to modify the code however it
want;

® As long as the observable behaviour is exactly the same.

LINKOPING
II.“ UNIVERSITY

33/47

Lifetime Management

As if rule

® The compiler is allowed to modify the code however it
want;

® As long as the observable behaviour is exactly the same.
® Copy elision is an exception to the as if rule;

® it allows the compiler to remove calls to copy or move
constructors.

LINKOPING
II.“ UNIVERSITY

34/47

Lifetime Management

Copy elision

int main()
{
Cls ti{};
Cls t2{t1},
Cls t3{Cls{}};
Ji

LINKOPING
II.“ UNIVERSITY

Lifetime Management

What will happen? Why?

{

1

}

struct Cls

Cls() = default;

Cls(Cls const&) { cout << "C"; }
Cls(Cls&&) { cout << "M"; }
~Cls() = default;

Cls ident(Cls c)

return c;

int main()

Cls c1{Cls{}};
Cls c2{ident(c1)};
Cls c3{c2};

35/47

LINKOPING
UNIVERSITY

II LINKOPING
o UNIVERSITY

37/47

Operator Overloading

Operators

® Most operators can be overloaded;

® the exceptionsare . .* :: ?:

LINKOPING
II.“ UNIVERSITY

38/47

Operator Overloading

Binary operators

® Given any binary operator @;

® x@y becomes x.operator@(y) or operator@(x,y).

LINKOPING
II.“ UNIVERSITY

38/47

Operator Overloading

Binary operators

® Given any binary operator @;
® x@y becomes x.operator@(y) or operator@(x,y).

® Example:

struct Cls

Cls operator+(Cls b);
}
int main()
{
Cls a, b;
Cls c{a+b};
}

LINKOPING
II.“ UNIVERSITY

38/47

Operator Overloading

Binary operators

® Given any binary operator @;
® x@y becomes x.operator@(y) or operator@(x,y).

® Example:

struct Cls

Cls operator+(Cls b);

}
int main()
{

Cls a, b;

Cls c{a.operator+(b)};
}

LINKOPING
II.“ UNIVERSITY

38/47

Operator Overloading

Binary operators

® Given any binary operator @;
® x@y becomes x.operator@(y) or operator@(x,y).

® Example:

struct Cls
{
Y
Cls operator+(Cls a, Cls b);
int main()
{
Cls a, b;
Cls c{a+b};
}

LINKOPING
II.“ UNIVERSITY

38/47

Operator Overloading

Binary operators

® Given any binary operator @;
® x@y becomes x.operator@(y) or operator@(x,y).

® Example:

struct Cls
{
Iy
Cls operator+(Cls a, Cls b);
int main()
{
Cls a, b;
Cls c{operator+(a, b)};
}

LINKOPING
II.“ UNIVERSITY

Operator Overloading

Rule of thumb

® Do | need this operator?

® What is the operators behaviour?

39/47

LINKOPING
II.“ UNIVERSITY

Operator Overloading

Rule of thumb

® Do | need this operator?
The operator should make sense. If there is any

ambiguity then don’t make an operator overload.

® What is the operators behaviour?

39/47

LINKOPING
II.“ UNIVERSITY

Operator Overloading

Rule of thumb

® Do | need this operator?
The operator should make sense. If there is any
ambiguity then don’t make an operator overload.

® What is the operators behaviour?
Should be similar to the built in types. The behaviour
should be as predictable as possible.

39/47

LINKOPING
II.“ UNIVERSITY

Operator Overloading

Type conversions

class Cls

{
public:
Cls(int i) : i{i} { }
operator int() const

{
by

private:
int i;

}r

return i;

40/47

LINKOPING
II.“ UNIVERSITY

41/47

Operator Overloading

Type conversions

® A constructor that can take one argument is called a
type converting constructor;

® these constructors can be used by the compiler to
perform conversions.

® The special operator Cls: :operator TYPE() is called
whenever the class Cls is converted to TYPE;

® the compiler is allowed to use this operator to perform
implicit type conversions;

® but can also be explicitly called through casting.

LINKOPING
II.“ UNIVERSITY

42/47

Operator Overloading

Explicit keyword

class Cls
{
public:
explicit Cls(int i) : i{i} { }
explicit operator int() const

{
by

private:
int i;

}r

return i;

LINKOPING
II.“ UNIVERSITY

Operator Overloading

Explicit keyword

® Declaring type converting constructors or operators as
explicit means;

® the compiler is not allowed to use these functions for
implicit type conversion;

® with the exception of operator bool which can be used
for contextual conversion.

43/47

LINKOPING
II.“ UNIVERSITY

Operator Overloading

Contextual Conversion

struct Cls

{
explicit operator bool() const { return flag; }
bool flag{};

+i

int main()

{
Cls c{};
if (c)

{

}

70 oo

}

44/47

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

46/47

Aggregates

What is an Aggregate?

An aggregate denotes a simple kind of data type with the
following properties;

An array- or class type;

no user-provided constructors;

no private or static data members;
no virtual functions;

no private base classes.

LINKOPING
II.“ UNIVERSITY

47/47

Aggregates

Basic Aggregate

struct Person
{
string name{"unknown"};
int age{};

}i

int main()
{
Person bob{"Bob", 37};
Person robin{"Robin"};
Person unknown{};
Person sara{.name = "Sara", .age = 29},;// C++20

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

www.liu.se

	References & const
	Classes
	Lifetime Management
	Operator Overloading
	Aggregates (Bonus)

