
TDDD38/726G82 ‐
Advanced programming in
C++
Basic C++

Christoffer Holm

Department of Computer and information science



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



2 / 31

Initial example
What will be printed? Why?

#include <iostream>
using std::cout;

int main()
{
int x {2};
if (x = 0)
cout << "x is zero\n";

else
cout << "Value of x: " << x << std::endl;

return 0;
}



3 / 31

Initial example
Why?

‚ The condition contains an assignment;

‚ x gets assigned the value 0;

‚ assignment returns a reference to x;

‚ x is 0 which is convertible to false;

‚ conditions in if‐statements are only valid if the
expression is convertible to bool.



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



6 / 31

Data types
Type categories

There are four categories of types:

‚ Fundamental types
‚ Array types
‚ Class types
‚ Enum types



6 / 31

Data types
Type categories

There are four categories of types:

‚ Fundamental types
‚ types that can be used directly;
‚ basic building blocks of all other types;
‚ commonly used for arithmetic operations;
‚ examples: int, double, char, bool.

‚ Array types
‚ Class types
‚ Enum types



6 / 31

Data types
Type categories

There are four categories of types:

‚ Fundamental types
‚ Array types

‚ represent arrays of a single type;
‚ used for storing a fixed count of values;
‚ there are better alternatives in modern C++;
‚ example: int array[3];

‚ Class types
‚ Enum types



6 / 31

Data types
Type categories

There are four categories of types:

‚ Fundamental types
‚ Array types
‚ Class types

‚ types composed of several different types;
‚ can even contain functions;
‚ all class, struct and union types.

‚ Enum types



6 / 31

Data types
Type categories

There are four categories of types:

‚ Fundamental types
‚ Array types
‚ Class types

struct Person
{
string name; // class type
int age; // fundamental type
int get_age(){ return age; } // function

};

‚ Enum types



6 / 31

Data types
Type categories

There are four categories of types:

‚ Fundamental types
‚ Array types
‚ Class types

union JSON
{

double val;
char const* str;
double get_value() { return val; }

};

‚ Enum types



7 / 31

Data types
Enum types

‚ a predefined set of discrete values;

‚ each possible value has a name;

‚ is an integral type;

‚ two variations: unscoped and scoped.



7 / 31

Data types
Enum types

enum Status // unscoped
{
ERROR,
PENDING,
GRANTED = 10,
DENIED

};



7 / 31

Data types
Enum types

enum class Status : char // scoped
{
ERROR = -1,
PENDING,
GRANTED,
DENIED

};



8 / 31

Data types
Value categories

‚ each expression in C++ have a type;

‚ the type of value that will be returned;

‚ example: 2*(1+1) have the type int.



9 / 31

Data types
Value categories

expression

glvalue rvalue

lvalue prvaluexvalue



10 / 31

Data types
Value categories

‚ glvalue
‚ lvalue
‚ xvalue
‚ prvalue



10 / 31

Data types
Value categories

‚ glvalue
‚ generalied left‐hand‐size value;
‚ denote an object;
‚ example: given a variable x, the expression x will

be a glvalue.
‚ lvalue
‚ xvalue
‚ prvalue



10 / 31

Data types
Value categories

‚ glvalue
‚ lvalue

‚ left‐hand‐size value;
‚ denote all glvalues that are not xvalues;
‚ the name rule: everything that has a name is an

lvalue.
‚ xvalue
‚ prvalue



10 / 31

Data types
Value categories

‚ glvalue
‚ lvalue
‚ xvalue

‚ expiring value;
‚ denotes a temporary object bound to an rvalue

reference;
‚ example: static_cast<int&&>(x), where x is of

type int.
‚ prvalue



10 / 31

Data types
Value categories

‚ glvalue
‚ lvalue
‚ xvalue
‚ prvalue

‚ pure right‐hand‐side value;
‚ a value literal;
‚ the value of an expression;
‚ can be used to initialize glvalues;
‚ example: 5, true, nullptr;
‚ example: x+1, where x is of type int{}.



10 / 31

Data types
Value categories

‚ glvalue
‚ lvalue
‚ xvalue
‚ prvalue

The term rvalue refers to both xvalues and prvalues.



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



12 / 31

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ Direct initialization: int x(5);

‚ Value initialization: int x{};

‚ List initialization: int x{5};



12 / 31

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ initialize an object by copying another object;
‚ will try to implicitly convert a value to make it work;
‚ tries to call any non‐explicit constructors with one

parameter.

‚ Direct initialization: int x(5);

‚ Value initialization: int x{};

‚ List initialization: int x{5};



12 / 31

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ Direct initialization: int x(5);

‚ initialize an object by calling an appropriate
constructor;

‚ will try to initialize each member from the
arguments;

‚ try to convert the supplied value to the same type
as the object;

‚ more permissive than copy initialization.

‚ Value initialization: int x{};

‚ List initialization: int x{5};



12 / 31

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ Direct initialization: int x(5);

‚ Value initialization: int x{};

‚ call the default constructor;
‚ if no default constructor exists, it will default

initialize the object.

‚ List initialization: int x{5};



12 / 31

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ Direct initialization: int x(5);

‚ Value initialization: int x{};

‚ List initialization: int x{5};

‚ If the type is a class type it will try to initialize each
member from the arguments;

‚ If that doesn’t work it will call an appropriate
constructor;

‚ Otherwise it will copy or value initialize;
‚ Narrowing conversions are prohibited during list

initializations.



12 / 31

Initialization
Ways of initialization

‚ Copy initialization: int x = 5;

‚ Direct initialization: int x(5);

‚ Value initialization: int x{};

‚ List initialization: int x{5};

It is highly recommended to use brace‐initialization
whenever possible.



13 / 31

Initialization
What will happen?

int main()
{
int x{};
cout << x << " ";
int y = 3.5;
cout << y << " ";
int z {3.5};
cout << z << endl;

}



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



15 / 31

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ boolean conversions



15 / 31

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ lvalues of arrays or functions decays to pointers;
‚ arrays becomes a pointer to the first element;
‚ functions become pointers to the code.

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ boolean conversions



15 / 31

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral types smaller than int can be promoted
into int;

‚ float can be promoted to double;
‚ enum types can be promoted to its underlying type.

‚ integral and floating conversions

‚ boolean conversions



15 / 31

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ Coresponds to all non‐promotions between integral
or floating point types;

‚ Conversion rank denotes the “size”;
‚ long long > long > int > short > char > bool.
‚ long double > double > float

‚ boolean conversions



15 / 31

Conversions
Implicit type conversions

‚ array‐to‐pointer and function‐to‐pointer

‚ promotions (integral and floating)

‚ integral and floating conversions

‚ boolean conversions

‚ integral types and pointers can be converted to
bool;

‚ all zero values (0 and nullptr) are false;
‚ all non‐zero values are true.



16 / 31

Conversions
What will happen? Why?

int main()
{
int array[5] {1,2,3,4,5};
cout << array << endl;

}



17 / 31

Conversions
What will happen? Why?

int main()
{
char str[4] {'h', 'i', '!', '\0'};
cout << str << endl;

}



18 / 31

Conversions
What will happen? Why?

void foo() { cout << "foo" << endl; }

int main()
{
cout << foo << endl;

}



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



20 / 31

Functions

‚ Function definition;

‚ Function declaration;

‚ Function overload;



20 / 31

Functions

‚ Function definition;

int foo(int parameter)
{
return parameter;

}

‚ Function declaration;

‚ Function overload;



20 / 31

Functions

‚ Function definition;

‚ Function declaration;

int foo(int parameter);

int foo(int parameter)
{
return parameter;

}

‚ Function overload;



20 / 31

Functions

‚ Function definition;

‚ Function declaration;

‚ Function overload;

int foo(int parameter)
{
return parameter;

}

double foo(double parameter)
{
return parameter;

}



20 / 31

Functions

‚ Function definition;

‚ Function declaration;

‚ Function overload;

int foo(int parameter)
{
return parameter;

}

double foo(double a, double b)
{
return a + b;

}



21 / 31

Functions
What will happen? Why?

void foo(int) { cout << "int" << endl; }

void foo(double) { cout << "double" << endl; }

int main()
{
foo(5);
foo(2.7);
foo(true);

}



22 / 31

Functions
What will happen? Why?

int main()
{
int var (int());
cout << var << endl;

}



23 / 31

Functions
Most Vexing Parse

‚ This is sometimes called the most vexing parse;

‚ Declarations are prefered over definitions;

‚ Ambiguity is a problem in C++;

‚ A lot of ambiguity is resolved by using
brace‐initialization whenever possible.



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



25 / 31

Memory Management & Pointers
What will happen? Why?

int& get()
{
int x{5};
return x;

}

int main()
{
cout << get() << endl;

}



26 / 31

Memory Management & Pointers
What will happen? Why?

int const* get()
{
return new int{5};

}

int main()
{
cout << *get() << endl;

}



27 / 31

Memory Management & Pointers
Manual Memory Management

int const* get()
{
return new int{5};

}

int main()
{
int const* const x{get()};
cout << x << endl;
delete x;

}



28 / 31

Memory Management & Pointers
Pointers vs. Arrays

int main()
{
int static_array[5];
int* dynamic_array {new int[5]};
cout << sizeof(static_array) << " ";
cout << sizeof(dynamic_array) << endl;
delete[] dynamic_array;

}



1 Initial example
2 Data types
3 Initialization
4 Conversions
5 Functions
6 Memory Management & Pointers
7 Command‐Line Arguments



30 / 31

Command‐Line Arguments

int main(int argc, char* argv[])
{
if (argc != 3)
{
cerr << "Wrong argument count!" << endl;
return 1;

}
for (int arg{}; arg < argc; ++arg)
cout << argv[arg] << endl;

return 0;
}



30 / 31

Command‐Line Arguments

int main(int argc, char* argv[])
{
if (argc != 3)
{
cerr << "Wrong argument count!" << endl;
return 1;

}
for (int arg{}; arg < argc; ++arg)
cout << argv[arg] << endl;

return 0;
}

$ a.out a b c



30 / 31

Command‐Line Arguments

$ a.out a b c
a.out
a
b
c



31 / 31

Command‐Line Arguments
What is argv?

a . o u t \0 a \0 b \0 c \0

argv: argc: 4



www.liu.se

www.liu.se

	Initial example
	Data types
	Initialization
	Conversions
	Functions
	Memory Management & Pointers
	Command-Line Arguments

