TDDD38/726G82 -

Advanced programming in
C++

Basic C++
Christoffer Holm

Department of Computer and information science

II LINKOPING
o UNIVERSITY

II LINKOPING
o UNIVERSITY

2/31

Initial example

What will be printed? Why?

#include <iostream>
using std::cout;

int main()
{
int x {2};
if (x = 0)
cout << "x is zero\n";
else
cout << "Value of x: " << x << std::endl;
return 0;

}

LINKOPING
II.“ UNIVERSITY

3/31

Initial example

Why?

® The condition contains an assignment;
® x gets assigned the value 0;

® assignment returns a reference to x;

® x is @ which is convertible to false;

¢ conditions in if-statements are only valid if the
expression is convertible to bool.

LINKOPING
II.“ UNIVERSITY

NoOoubs,WwWwN -

Initial example

Data types

Initialization

Conversions

Functions

Memory Management & Pointers
Command-Line Arguments

II LINKOPING
o UNIVERSITY

6/31

Data types

Type categories

There are four categories of types:

Fundamental types
Array types
Class types

[]
[]
[
® Enum types

LINKOPING
II.“ UNIVERSITY

6/31

Data types

Type categories

There are four categories of types:

® Fundamental types
® types that can be used directly;
® basic building blocks of all other types;
® commonly used for arithmetic operations;
® examples: int, double, char, bool.
® Array types
® Class types
® Enum types

LINKOPING
II.“ UNIVERSITY

6/31

Data types

Type categories

There are four categories of types:

® Fundamental types
® Array types
® represent arrays of a single type;
¢ used for storing a fixed count of values;
® there are better alternatives in modern C++;
® example: int array[3];
® Class types
® Enum types

LINKOPING
II.“ UNIVERSITY

6/31

Data types

Type categories

There are four categories of types:

® Fundamental types

® Array types

® Class types
® types composed of several different types;
® can even contain functions;
¢ all class, struct and union types.

® Enum types

LINKOPING
II.“ UNIVERSITY

6/31

Data types
Type categories
There are four categories of types:

® Fundamental types
® Array types
® Class types

struct Person

{

string name; // class type
int age; // fundamental type
int get_age(){ return age; } // function

i

® Fnum tvnes

LINKOPING
II.“ UNIVERSITY

6/31

Data types
Type categories
There are four categories of types:

® Fundamental types
® Array types
® Class types

union JSON

double val;
char const* str;
double get_value() { return val; }

i

® Fnum tvnes

LINKOPING
II.“ UNIVERSITY

7/31

Data types

Enum types

a predefined set of discrete values;
® each possible value has a name;
® is anintegral type;

e two variations: unscoped and scoped.

LINKOPING
II.“ UNIVERSITY

7/31

Data types

Enum types

enum Status // unscoped
{

ERROR,

PENDING,

GRANTED = 10,

DENIED
iy

LINKOPING
II.“ UNIVERSITY

7/31

Data types

Enum types

enum class Status : char // scoped

{
ERROR = -1,
PENDING,
GRANTED,
DENIED

i

LINKOPING
II.“ UNIVERSITY

8/31

Data types

Value categories

® each expression in C++ have a type;
® the type of value that will be returned;

® example: 2* (1+1) have the type int.

LINKOPING
II.“ UNIVERSITY

Data types

Value categories

expression

glvalue rvalue

Ivalue xvalue prvalue

9/31

II LINKOPING
o UNIVERSITY

10/31

Data types

Value categories

glvalue
Ivalue
xvalue
prvalue

II LINKOPING
o UNIVERSITY

10/31

Data types

Value categories

glvalue
¢ generalied left-hand-size value;
® denote an object;
® example: given a variable x, the expression x will
be a glvalue.
Ivalue
xvalue
prvalue

II LINKOPING
o UNIVERSITY

10/31

Data types

Value categories

® glvalue
Ivalue
® |eft-hand-size value;
¢ denote all glvalues that are not xvalues;
® the name rule: everything that has a name is an
Ivalue.
xvalue
prvalue

II LINKOPING
o UNIVERSITY

10/31

Data types

Value categories

glvalue
Ivalue
xvalue
® expiring value;
® denotes a temporary object bound to an rvalue
reference;
® example: static_cast<int&&>(x), where x is of
type int.
prvalue

II LINKOPING
o UNIVERSITY

Data types

Value categories

10/31

® glvalue

Ivalue
xvalue
prvalue

pure right-hand-side value;

a value literal;

the value of an expression;

can be used to initialize glvalues;
example: 5, true, nullptr;

example: x+1, where x is of type int{}.

II LINKOPING
o UNIVERSITY

10/31

Data types

Value categories

® glvalue
® |value
® xvalue
® prvalue

The term rvalue refers to both xvalues and prvalues.

II LINKOPING
o UNIVERSITY

II LINKOPING
o UNIVERSITY

12/31
Initialization

Ways of initialization

Copy initialization: int x = 5;

® Direct initialization: int x(5);

Value initialization: int x{};

List initialization: int x{5%};

LINKOPING
II.“ UNIVERSITY

12/31

Initialization
Ways of initialization
® Copy initialization: int x = 5;

¢ initialize an object by copying another object;
® will try to implicitly convert a value to make it work;
® tries to call any non-explicit constructors with one

parameter.
® Direct initialization: int x(5);
® Value initialization: int x{};

e Listinitialization: int x{5};

LINKOPING
II.“ UNIVERSITY

12/31

Initialization

Ways of initialization
® Copy initialization: int x = 5;
® Direct initialization: int x(5);

® initialize an object by calling an appropriate
constructor;

¢ will try to initialize each member from the
arguments;

® try to convert the supplied value to the same type
as the object;

® more permissive than copy initialization.

a V/aliin tmislallcaadl . 2 om0 L0 L

LINKOPING
II.“ UNIVERSITY

12/31
Initialization
Ways of initialization
® Copy initialization: int x = 5;
® Direct initialization: int x(5);
® Value initialization: int x{3};

¢ call the default constructor;
¢ if no default constructor exists, it will default
initialize the object.

® List initialization: int x{5};

LINKOPING
II.“ UNIVERSITY

12/31
Initialization
Ways of initialization
® Copy initialization: int x = 5;
® Direct initialization: int x(5);
® Value initialization: int x{3};
® Listinitialization: int x{5};

® [f the type is a class type it will try to initialize each
member from the arguments;

¢ |f that doesn’t work it will call an appropriate
constructor;

® Otherwise it will copy or value initialize;

LINKOPING
II.“ UNIVERSITY

12/31
Initialization

Ways of initialization

® Copy initialization: int x = 5;
® Direct initialization: int x(5);
® Value initialization: int x{};
e Listinitialization: int x{5};

It is highly recommended to use brace-initialization
whenever possible.

LINKOPING
II.“ UNIVERSITY

13/31
Initialization

What will happen?

int main()

{
int x{};
cout << x << " ",
int y = 3.5;
cout <<y << " ",

int z {3.5};
cout << z << endl;

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

15/31

Conversions

Implicit type conversions

® array-to-pointer and function-to-pointer

promotions (integral and floating)

integral and floating conversions

boolean conversions

LINKOPING
II.“ UNIVERSITY

15/31

Conversions

Implicit type conversions

® array-to-pointer and function-to-pointer

® |values of arrays or functions decays to pointers;
® arrays becomes a pointer to the first element;
® functions become pointers to the code.

® promotions (integral and floating)
® integral and floating conversions

® boolean conversions

LINKOPING
II.“ UNIVERSITY

15/31

Conversions

Implicit type conversions

® array-to-pointer and function-to-pointer
® promotions (integral and floating)

® integral types smaller than int can be promoted
into int;
® float can be promoted to double;
® enum types can be promoted to its underlying type.
® integral and floating conversions

® boolean conversions

LINKOPING
II.“ UNIVERSITY

15/31

Conversions

Implicit type conversions
® array-to-pointer and function-to-pointer
® promotions (integral and floating)
¢ integral and floating conversions

® Coresponds to all non-promotions between integral
or floating point types;

® Conversion rank denotes the “size”;

® long long > long > int > short >char >bool.

® long double >double > float

® boolean conversions

LINKOPING
II.“ UNIVERSITY

15/31

Conversions

Implicit type conversions

® array-to-pointer and function-to-pointer
® promotions (integral and floating)

® integral and floating conversions

® boolean conversions

® integral types and pointers can be converted to
bool,;

® all zero values (0 and nullptr) are false;

® all non-zero values are true.

LINKOPING
II.“ UNIVERSITY

16/31

Conversions

What will happen? Why?

int main()

{
int array[5] {1,2,3,4,5};
cout << array << endl;

}

LINKOPING
II.“ UNIVERSITY

17/31

Conversions

What will happen? Why?

int main()

char str[4] {'h", '1', "!', '\0'};
cout << str << endl;

}

LINKOPING
II.“ UNIVERSITY

18/31

Conversions

What will happen? Why?

void foo() { cout << "foo" << endl; }

int main()

{

cout << foo << endl;
}

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

20/31

Functions

® Function definition;
® Function declaration;

® Function overload;

LINKOPING
II.“ UNIVERSITY

Functions

® Function definition;

int foo(int parameter)

{
)

return parameter;

® Function declaration;

® Function overload;

20/31

LINKOPING
II.“ UNIVERSITY

Functions

® Function definition;

® Function declaration;

int foo(int parameter);

int foo(int parameter)

{
3

return parameter;

® Function overload;

20/31

LINKOPING
II.“ UNIVERSITY

Functions

® Function definition;
® Function declaration;

® Function overload;

int foo(int parameter)

{
i

return parameter;

double foo(double parameter)

{
}

return parameter;

20/31

LINKOPING
II.“ UNIVERSITY

20/31

Functions

® Function definition;
® Function declaration;

® Function overload;

int foo(int parameter)

{
i

double foo(double a, double b)
{

}

return parameter;

return a + b;

LINKOPING
II.“ UNIVERSITY

21/31

Functions

What will happen? Why?

void foo(int) { cout << "int" << endl; }
void foo(double) { cout << "double" << endl; }

int main()

{
foo(5);
foo(2.7);
foo(true);

}

LINKOPING
II.“ UNIVERSITY

22/31

Functions

What will happen? Why?

int main()

{
int var (int());
cout << var << endl;

}

LINKOPING
II.“ UNIVERSITY

23/31

Functions

Most Vexing Parse

This is sometimes called the most vexing parse;

Declarations are prefered over definitions;

Ambiguity is a problem in C++;

A lot of ambiguity is resolved by using
brace-initialization whenever possible.

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

25/31

Memory Management & Pointers

What will happen? Why?

int& get()
{
int x{5};
return Xx;

}

int main()

{
}

cout << get() << endl;

LINKOPING
II.“ UNIVERSITY

26/31

Memory Management & Pointers

What will happen? Why?

int const* get()

{
)

return new int{5};

int main()

{
3

cout << *get() << endl;

LINKOPING
II.“ UNIVERSITY

27/31

Memory Management & Pointers

Manual Memory Management

int const* get()

{
}

return new int{5};

int main()
{
int const* const x{get()};
cout << x << endl;
delete x;

}

LINKOPING
II.“ UNIVERSITY

28/31

Memory Management & Pointers

Pointers vs. Arrays

int main()
{
int static_array[5];
int* dynamic_array {new int[5]};
cout << sizeof(static_array) << " ";
cout << sizeof(dynamic_array) << endl;
delete[] dynamic_array;

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

30/31

Command-Line Arguments

int main(int argc, char* argv[])

¢ if (argc != 3)
{
cerr << "Wrong argument count!" << endl;
return 1;
by

for (int arg{}; arg < argc; ++arg)
cout << argv[arg] << endl;
return 0;

LINKOPING
II.“ UNIVERSITY

Command-Line Arguments

int main(int argc, char* argv[])
{
if (argc != 3)
{
cerr << "Wrong argument count!" << endl;
return 1;
}
for (int arg{}; arg < argc; ++arg)
cout << argv[arg] << endl;
return 0O;
}
$ a.out a b c

30/31

LINKOPING
II.“ UNIVERSITY

30/31

Command-Line Arguments

$ a.out a b c
a.out

a

b
c

LINKOPING
II.“ UNIVERSITY

31/31

Command-Line Arguments

What is argv?

argv: |\ | / argc:| 4

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

www.liu.se

	Initial example
	Data types
	Initialization
	Conversions
	Functions
	Memory Management & Pointers
	Command-Line Arguments

