Dynamic linking in C++

Filip Stromback

II LINKOPING
o UNIVERSITY

1 Introduction

II LINKOPING
o UNIVERSITY

Dynamic linking in C++ Filip Stromback

Motivation

Why should we know about /linking?

® Understand and fix errors/warnings
® Motivates the design of some parts of C++
= Easier to remember “rules” when you know why

Allows reasoning about optimizations (inlining)

Utilize the powers of dynamic linking (plugin systems,
etc.)

(Abuse the “strange” corners of dynamic linking)

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback
Scope

(Dynamic) linking is currently not standardized. You will
soon see why.

e Main focus: UNIX (Linux + elf)
= .0, .a, .So

® Also: Windows
= .obj, .1lib, .d11l

® Some of the examples exhibit undefined behavior, be
careful!

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Tools

How do we see what happens?
e Compiler (gcc)
¢ Debugger (gdb)
Binutils (ar, readelf, objdump)
The dynamic linker 4 tools (1d.so, 1dd)

Various test programs and a lot of curiosity

LINKOPING
II.“ UNIVERSITY

2 What does the linker do?

II LINKOPING
o UNIVERSITY

Dynamic linking in C++ Filip Stromback

Example

Consider the code in 01_multi-files

® Why does this work?

® Why can't | modify the parameter to function_a?

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Your program from the linker's perspective

main
function_a
function_b

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Your program from the linker's perspective

£3 0f 1le fa

in 55 48 89 e5
function_a 58 48 83 ec
S- 08 48 8d 35
function_b e __
48 8d 3d --

---——--¢e8

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Your program from the linker's perspective

main.o

Linker

Output

4444444447\\\\\$
\

Symbol tables Merged table, resolved refs

® objdump -t <file> — show symbol table
® objdump -t -C <file> — show symbol table
® objdump -d -C <file> — disassemble code

LINKOPING
II.“ UNIVERSITY

3 Static libraries

II LINKOPING
o UNIVERSITY

Dynamic linking in C++

Filip Stromback

Brief history: Static libraries

What if we have a “

distribute many .o files...

large"” library? Inconvenient to

libl.o *[]—> lib.a main.o
1lib2.0 g+t
main

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

What is an .a-file?

Consider the code in 02_static-1ib.

® ar t <file> — list members

® ar x <file> — extract members

11

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback 12

Problems with static linking

Static linking copies code into the final binary. This
means:

® The final binary becomes larger, both on disk and in
RAM

® Fixing a bug in the library requires re-compiling all
programs using it

LINKOPING
II.“ UNIVERSITY

4 Dynamic linking

II LINKOPING
o UNIVERSITY

Dynamic linking in C++ Filip Stromback
Dynamic linking

Idea: leave symbols undefined and resolve them when
loading the program

We then let the dynamic linker handle linking of shared
libraries

® Avoids copies of code, both on disk and in RAM

® \We can easily update the library

® Makes loading code at runtime easier

14

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Practicalities

Modelled to work like static linking

This is what the -1 flag does. Two forms:

» -1<x> = finds 1ib<x>.so
s -1:<x> = finds <x>

Default: system’s library path, we can use -L to
modify this

The dynamic linker also needs to know where to look
= rpath or runpath

® Code must be position independent. —fPIC

15

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback 16
Dynamic linking

Consider the code in 03_shared-1ib

® readelf -h <program> — show headers

® readelf -1 <program> — show program headers

® readelf -d <program> — inspect dependencies

® objdump -T <program> — inspect dynamic symbol
table

® 1dd <program> — inspect behavior of dynamic linker

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Multiple dynamic libraries

Consider the code in 04_multi-shared. We have two
libraries, 1ibl.so and 1ib2.so linked to our executable.

® Try uncommenting 1ib_name in 1ib1l.cpp
® Try uncommenting print_greeting in 1ib1l.cpp

® Try uncommenting check_int in main.cpp
= The symbols in all libraries form a single namespace!
= Order based on appearance on command line

® How do we fix this?

17

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback 18
Library isolation

Linux (UNIX in general):

® Symbols have visibility:
= default — visible outside the shared object
= hidden — only visible inside the shared object
= internal — only called from the same module
= protected — can not be overridden by another module

® We can set default with ~fvisibility=hidden

® \We can use static and anonymous namespaces.

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Differences on Windows

Windows takes a different approach:

® Symbols are hidden by default

= Explicitly export symbols __declspec(dllexport)
= Explicitly import symbols __declspec(dllimport)

® Compiling a DLL makes the DLL and a import library
(.1ib)
® Link with the import library to use the DLL

® Search path typically include executable’s path by
default

19

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback 20

Sidenote: system calls

Linux:
® Has a well-defined interface for system calls
e C library implements a wrapper for these
Windows:

® Exposes system calls through functions in DLLs

® Does not need to define how system calls are
performed

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback 21

Calling the dynamic linker

We can load libraries dynamically by calling the dynamic
linker (-1d1 on Linux):

® dlopen or LoadLibrary — load a shared library

® dlclose or FreeLibrary — unload a shared library

® dlsym or GetProcAddress — get the address of a
symbol
Note: name mangling differs between systems, even
for C!

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Calling the dynamic linker

Consider the code in 05_dlsym

® Try running ./main ./libl.so

and ./main ./1ib2.so
® What happens if we specify RTLD_NOW?
® Why do we need RTLD_GLOBAL?

® Why don’t we get an error when linking 1ib2.s0?
= We can add -W1,-z,defs

® Why can’t we add do_fun_stuff in main
executable?

= We can link with -rdynamic

22

LINKOPING
II.“ UNIVERSITY

5 Implications of dynamic linking
How can we abuse this to do strange things?

II LINKOPING
o UNIVERSITY

Dynamic linking in C++ Filip Stromback

What can the compiler assume?

Consider the code in 06_dynamic-rebind

® Try running ./main
and LD_PRELOAD=inject.so ./main

® Unless visibility is set, symbols may be overwritten

= Compiler is not able to inline/reason about functions

24

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Patch internal functions

Consider the code in 07_patch:

® |f you know the internals of a library, it is possible to
intercept and patch functionality...

25

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Instrument a program

Consider the code in 08_instrument:

® \We can inject our minimal library anywhere we want

® For example: LD_PRELOAD=. /track.so
/usr/bin/echo hello

26

LINKOPING
II.“ UNIVERSITY

Dynamic linking in C++ Filip Stromback

Windows

® Stronger guarantees by default: compiler is able to
reason about the code to a larger extent
® Strong isolation leads to other peculiarities. In
particular, we may have multiple copies of the same
thing:
= metadata: must compare names of types, rather than
pointers
= globals: sometimes we have multiple heaps, must
allocate and free from the same DLL
® All symbols must be resolved, more work to make
“pluggable” interfaces
® We can still “bad things"”, but they require more work

27

LINKOPING
UNIVERSITY

Dynamic linking in C++ Filip Stromback 28

Implications for library design

There are many things to consider when writing libraries.
Good API design is important, and we need to consider
how linking works:

e Consider visibility, especially for internal functions

® Memory allocated by your library might need to be
freed by your library

® You might have multiple instances of code and/or
data

LINKOPING
II.“ UNIVERSITY

Filip Stromback

www.liu.se

II LINKOPING
o UNIVERSITY

www.liu.se

	Introduction
	What does the linker do?
	Static libraries
	Dynamic linking
	Implications of dynamic linking
	How can we abuse this to do strange things?

