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Motivation

Why should we know about /linking?

® Understand and fix errors/warnings
® Motivates the design of some parts of C++
= Easier to remember “rules” when you know why

Allows reasoning about optimizations (inlining)

Utilize the powers of dynamic linking (plugin systems,
etc.)

(Abuse the “strange” corners of dynamic linking)
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Scope

(Dynamic) linking is currently not standardized. You will
soon see why.

e Main focus: UNIX (Linux + elf)
= .0, .a, .So

® Also: Windows
= .obj, .1lib, .d11l

® Some of the examples exhibit undefined behavior, be
careful!
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Tools

How do we see what happens?
e Compiler (gcc)
¢ Debugger (gdb)
Binutils (ar, readelf, objdump)
The dynamic linker 4 tools (1d.so, 1dd)

Various test programs and a lot of curiosity
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2 What does the linker do?
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Example

Consider the code in 01_multi-files

® Why does this work?

® Why can't | modify the parameter to function_a?
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Your program from the linker's perspective

main
function_a
function_b
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Your program from the linker's perspective

£3 0f 1le fa

in 55 48 89 e5
function_a 58 48 83 ec
S- 08 48 8d 35
function_b e __
48 8d 3d --
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Your program from the linker's perspective

main.o

Linker

Output

4444444447\\\\\$
\

Symbol tables Merged table, resolved refs

® objdump -t <file> — show symbol table
® objdump -t -C <file> — show symbol table
® objdump -d -C <file> — disassemble code
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3 Static libraries
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Brief history: Static libraries

What if we have a “

distribute many .o files...

large"” library? Inconvenient to

libl.o *[ ]—> lib.a main.o
1lib2.0 g+t
main
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What is an .a-file?

Consider the code in 02_static-1ib.

® ar t <file> — list members

® ar x <file> — extract members

11
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Problems with static linking

Static linking copies code into the final binary. This
means:

® The final binary becomes larger, both on disk and in
RAM

® Fixing a bug in the library requires re-compiling all
programs using it
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4 Dynamic linking
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Dynamic linking

Idea: leave symbols undefined and resolve them when
loading the program

We then let the dynamic linker handle linking of shared
libraries

® Avoids copies of code, both on disk and in RAM

® \We can easily update the library

® Makes loading code at runtime easier

14
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Practicalities

Modelled to work like static linking

This is what the -1 flag does. Two forms:

» -1<x> = finds 1ib<x>.so
s -1:<x> = finds <x>

Default: system’s library path, we can use -L to
modify this

The dynamic linker also needs to know where to look
= rpath or runpath

® Code must be position independent. —fPIC

15
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Dynamic linking

Consider the code in 03_shared-1ib

® readelf -h <program> — show headers

® readelf -1 <program> — show program headers

® readelf -d <program> — inspect dependencies

® objdump -T <program> — inspect dynamic symbol
table

® 1dd <program> — inspect behavior of dynamic linker
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Multiple dynamic libraries

Consider the code in 04_multi-shared. We have two
libraries, 1ibl.so and 1ib2.so linked to our executable.

® Try uncommenting 1ib_name in 1ib1l.cpp
® Try uncommenting print_greeting in 1ib1l.cpp

® Try uncommenting check_int in main.cpp
= The symbols in all libraries form a single namespace!
= Order based on appearance on command line

® How do we fix this?

17
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Library isolation

Linux (UNIX in general):

® Symbols have visibility:
= default — visible outside the shared object
= hidden — only visible inside the shared object
= internal — only called from the same module
= protected — can not be overridden by another module

® We can set default with ~fvisibility=hidden

® \We can use static and anonymous namespaces.
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Differences on Windows

Windows takes a different approach:

® Symbols are hidden by default

= Explicitly export symbols __declspec(dllexport)
= Explicitly import symbols __declspec(dllimport)

® Compiling a DLL makes the DLL and a import library
(.1ib)
® Link with the import library to use the DLL

® Search path typically include executable’s path by
default

19
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Sidenote: system calls

Linux:
® Has a well-defined interface for system calls
e C library implements a wrapper for these
Windows:

® Exposes system calls through functions in DLLs

® Does not need to define how system calls are
performed
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Calling the dynamic linker

We can load libraries dynamically by calling the dynamic
linker (-1d1 on Linux):

® dlopen or LoadLibrary — load a shared library

® dlclose or FreeLibrary — unload a shared library

® dlsym or GetProcAddress — get the address of a
symbol
Note: name mangling differs between systems, even
for C!
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Calling the dynamic linker

Consider the code in 05_dlsym

® Try running ./main ./libl.so

and ./main ./1ib2.so
® What happens if we specify RTLD_NOW?
® Why do we need RTLD_GLOBAL?

® Why don’t we get an error when linking 1ib2.s0?
=  We can add -W1,-z,defs

® Why can’t we add do_fun_stuff in main
executable?

=  We can link with -rdynamic
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5 Implications of dynamic linking
How can we abuse this to do strange things?
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What can the compiler assume?

Consider the code in 06_dynamic-rebind

® Try running ./main
and LD_PRELOAD=inject.so ./main

® Unless visibility is set, symbols may be overwritten

= Compiler is not able to inline/reason about functions

24
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Patch internal functions

Consider the code in 07_patch:

® |f you know the internals of a library, it is possible to
intercept and patch functionality...

25
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Instrument a program

Consider the code in 08_instrument:

® \We can inject our minimal library anywhere we want

® For example: LD_PRELOAD=. /track.so
/usr/bin/echo hello

26

LINKOPING
II.“ UNIVERSITY



Dynamic linking in C++ Filip Stromback

Windows

® Stronger guarantees by default: compiler is able to
reason about the code to a larger extent
® Strong isolation leads to other peculiarities. In
particular, we may have multiple copies of the same
thing:
= metadata: must compare names of types, rather than
pointers
= globals: sometimes we have multiple heaps, must
allocate and free from the same DLL
® All symbols must be resolved, more work to make
“pluggable” interfaces
® We can still “bad things"”, but they require more work

27
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Implications for library design

There are many things to consider when writing libraries.
Good API design is important, and we need to consider
how linking works:

e Consider visibility, especially for internal functions

® Memory allocated by your library might need to be
freed by your library

® You might have multiple instances of code and/or
data
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