
Dynamic linking in C++
Filip Strömbäck



1 Introduction
2 What does the linker do?
3 Static libraries
4 Dynamic linking
5 Implications of dynamic linking

How can we abuse this to do strange things?



Dynamic linking in C++ Filip Strömbäck 2

Motivation

Why should we know about linking?
• Understand and fix errors/warnings
• Motivates the design of some parts of C++

• Easier to remember “rules” when you know why
• Allows reasoning about optimizations (inlining)
• Utilize the powers of dynamic linking (plugin systems,

etc.)
• (Abuse the “strange” corners of dynamic linking)



Dynamic linking in C++ Filip Strömbäck 3

Scope

(Dynamic) linking is currently not standardized. You will
soon see why.
• Main focus: UNIX (Linux + elf)

• .o, .a, .so
• Also: Windows

• .obj, .lib, .dll
• Some of the examples exhibit undefined behavior, be

careful!



Dynamic linking in C++ Filip Strömbäck 4

Tools

How do we see what happens?
• Compiler (gcc)
• Debugger (gdb)
• Binutils (ar, readelf, objdump)
• The dynamic linker + tools (ld.so, ldd)
• Various test programs and a lot of curiosity



1 Introduction
2 What does the linker do?
3 Static libraries
4 Dynamic linking
5 Implications of dynamic linking

How can we abuse this to do strange things?



Dynamic linking in C++ Filip Strömbäck 6

Example

Consider the code in 01_multi-files

• Why does this work?
• Why can’t I modify the parameter to function_a?



Dynamic linking in C++ Filip Strömbäck 7

Your program from the linker’s perspective

main
function_a
function_b
...



Dynamic linking in C++ Filip Strömbäck 7

Your program from the linker’s perspective

main
function_a
function_b
...

f3 0f 1e fa
55 48 89 e5
53 48 83 ec
08 48 8d 35
-- -- -- --
48 8d 3d --
-- -- -- e8



Dynamic linking in C++ Filip Strömbäck 8

Your program from the linker’s perspective

main.o

a.o

Linker Output

Symbol tables Merged table, resolved refs

• objdump -t <file> – show symbol table
• objdump -t -C <file> – show symbol table
• objdump -d -C <file> – disassemble code



1 Introduction
2 What does the linker do?
3 Static libraries
4 Dynamic linking
5 Implications of dynamic linking

How can we abuse this to do strange things?



Dynamic linking in C++ Filip Strömbäck 10

Brief history: Static libraries

What if we have a “large” library? Inconvenient to
distribute many .o files...

lib1.o

lib2.o

ar lib.a main.o

g++

main



Dynamic linking in C++ Filip Strömbäck 11

What is an .a-file?

Consider the code in 02_static-lib.

• ar t <file> – list members
• ar x <file> – extract members



Dynamic linking in C++ Filip Strömbäck 12

Problems with static linking

Static linking copies code into the final binary. This
means:
• The final binary becomes larger, both on disk and in

RAM
• Fixing a bug in the library requires re-compiling all

programs using it



1 Introduction
2 What does the linker do?
3 Static libraries
4 Dynamic linking
5 Implications of dynamic linking

How can we abuse this to do strange things?



Dynamic linking in C++ Filip Strömbäck 14

Dynamic linking

Idea: leave symbols undefined and resolve them when
loading the program
We then let the dynamic linker handle linking of shared
libraries
• Avoids copies of code, both on disk and in RAM
• We can easily update the library
• Makes loading code at runtime easier



Dynamic linking in C++ Filip Strömbäck 15

Practicalities

• Modelled to work like static linking
• This is what the -l flag does. Two forms:

• -l<x> ⇒ finds lib<x>.so
• -l:<x> ⇒ finds <x>

• Default: system’s library path, we can use -L to
modify this

• The dynamic linker also needs to know where to look
• rpath or runpath

• Code must be position independent: -fPIC



Dynamic linking in C++ Filip Strömbäck 16

Dynamic linking

Consider the code in 03_shared-lib

• readelf -h <program> – show headers
• readelf -l <program> – show program headers
• readelf -d <program> – inspect dependencies
• objdump -T <program> – inspect dynamic symbol

table
• ldd <program> – inspect behavior of dynamic linker



Dynamic linking in C++ Filip Strömbäck 17

Multiple dynamic libraries

Consider the code in 04_multi-shared. We have two
libraries, lib1.so and lib2.so linked to our executable.

• Try uncommenting lib_name in lib1.cpp
• Try uncommenting print_greeting in lib1.cpp
• Try uncommenting check_int in main.cpp

⇒ The symbols in all libraries form a single namespace!
• Order based on appearance on command line

• How do we fix this?



Dynamic linking in C++ Filip Strömbäck 18

Library isolation

Linux (UNIX in general):
• Symbols have visibility:

• default – visible outside the shared object
• hidden – only visible inside the shared object
• internal – only called from the same module
• protected – can not be overridden by another module

• We can set default with -fvisibility=hidden
• We can use static and anonymous namespaces.



Dynamic linking in C++ Filip Strömbäck 19

Differences on Windows

Windows takes a different approach:
• Symbols are hidden by default

• Explicitly export symbols __declspec(dllexport)
• Explicitly import symbols __declspec(dllimport)

• Compiling a DLL makes the DLL and a import library
(.lib)

• Link with the import library to use the DLL
• Search path typically include executable’s path by

default



Dynamic linking in C++ Filip Strömbäck 20

Sidenote: system calls

Linux:
• Has a well-defined interface for system calls
• C library implements a wrapper for these

Windows:
• Exposes system calls through functions in DLLs
• Does not need to define how system calls are

performed



Dynamic linking in C++ Filip Strömbäck 21

Calling the dynamic linker

We can load libraries dynamically by calling the dynamic
linker (-ldl on Linux):
• dlopen or LoadLibrary – load a shared library
• dlclose or FreeLibrary – unload a shared library
• dlsym or GetProcAddress – get the address of a

symbol
Note: name mangling differs between systems, even
for C!



Dynamic linking in C++ Filip Strömbäck 22

Calling the dynamic linker

Consider the code in 05_dlsym

• Try running ./main ./lib1.so
and ./main ./lib2.so

• What happens if we specify RTLD_NOW?
• Why do we need RTLD_GLOBAL?
• Why don’t we get an error when linking lib2.so?

• We can add -Wl,-z,defs
• Why can’t we add do_fun_stuff in main

executable?
• We can link with -rdynamic



1 Introduction
2 What does the linker do?
3 Static libraries
4 Dynamic linking
5 Implications of dynamic linking

How can we abuse this to do strange things?



Dynamic linking in C++ Filip Strömbäck 24

What can the compiler assume?

Consider the code in 06_dynamic-rebind

• Try running ./main
and LD_PRELOAD=inject.so ./main

• Unless visibility is set, symbols may be overwritten
⇒ Compiler is not able to inline/reason about functions



Dynamic linking in C++ Filip Strömbäck 25

Patch internal functions

Consider the code in 07_patch:

• If you know the internals of a library, it is possible to
intercept and patch functionality...



Dynamic linking in C++ Filip Strömbäck 26

Instrument a program

Consider the code in 08_instrument:

• We can inject our minimal library anywhere we want
• For example: LD_PRELOAD=./track.so

/usr/bin/echo hello



Dynamic linking in C++ Filip Strömbäck 27

Windows

• Stronger guarantees by default: compiler is able to
reason about the code to a larger extent

• Strong isolation leads to other peculiarities. In
particular, we may have multiple copies of the same
thing:
• metadata: must compare names of types, rather than

pointers
• globals: sometimes we have multiple heaps, must

allocate and free from the same DLL
• All symbols must be resolved, more work to make

“pluggable” interfaces
• We can still “bad things”, but they require more work



Dynamic linking in C++ Filip Strömbäck 28

Implications for library design

There are many things to consider when writing libraries.
Good API design is important, and we need to consider
how linking works:
• Consider visibility, especially for internal functions
• Memory allocated by your library might need to be

freed by your library
• You might have multiple instances of code and/or

data



Filip Strömbäck

www.liu.se

www.liu.se

	Introduction
	What does the linker do?
	Static libraries
	Dynamic linking
	Implications of dynamic linking
	How can we abuse this to do strange things?


