
ABIs and (Dynamic) Linking in C++
Filip Strömbäck

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 2

The Topic for Today
How are C++-features implemented?

In particular:
• Object layout
• Function calls
• Linking

Focus on Linux AMD64, but with hints
of Windows, x86-32, and ARM64

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 2

The Topic for Today
How are C++-features implemented?

In particular:
• Object layout
• Function calls
• Linking

Focus on Linux AMD64, but with hints
of Windows, x86-32, and ARM64

This is outside the C++ standard,
compiler may do as it wishes.

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 2

The Topic for Today
How are C++-features implemented?

In particular:
• Object layout
• Function calls
• Linking

Focus on Linux AMD64, but with hints
of Windows, x86-32, and ARM64

This is outside the C++ standard,
compiler may do as it wishes.
However: different compilers want to
be compatible, to use pre-compiled
libraries, provide FFI, ...
⇒ they follow the ABI
Using different compilers (and even
languages) requires a bit of care

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 2

The Topic for Today
How are C++-features implemented?

In particular:
• Object layout
• Function calls
• Linking

Focus on Linux AMD64, but with hints
of Windows, x86-32, and ARM64

Why?

If you know the implementation...
• ...you can reason about the cost
of language features

• ...you can understand why certain
things are undefined

• ...you can //abuse the
implementation to do fun things

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 3

A Note About the Examples

Many code examples are not defined according to the C++ standard. They
do, however, fall within the realms of the ABI and the POSIX standard, and
are likely to work.
Don’t use the approaches here without understanding them well, the risks
involved, and isolating them for when they break.
The code examples will be available on the course webpage if you wish to
experiment with them.

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 4

How to Investigate Further?
Explore by reading the output from the
compiler:
• g++ -S <file> or
cl /FAs <file>

• objdump -d <program>
• readelf -a
• In a debugger (e.g. gdb with
command disas)

• Compiler Explorer

Understand what falls within the
specification:
• OSDev Wiki (https://wiki.
osdev.org/System_V_ABI)

• System V ABI:
• AMD64:

https://www.uclibc.org/
docs/psABI-x86_64.pdf

• ARM: https://github.com/
ARM-software/abi-aa/tree/
main

https://wiki.osdev.org/System_V_ABI
https://wiki.osdev.org/System_V_ABI
https://www.uclibc.org/docs/psABI-x86_64.pdf
https://www.uclibc.org/docs/psABI-x86_64.pdf
https://github.com/ARM-software/abi-aa/tree/main
https://github.com/ARM-software/abi-aa/tree/main
https://github.com/ARM-software/abi-aa/tree/main

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 6

What is an API (Application Programming Interface)?

Set of operations with well-defined behavior, e.g. header files in C++
Answers the question: How should I write my code to use some library?

class Data {
public:

int a;
double b;
Data();

};
void print_val(Data d);
void print_cr(const Data &d);

• Specifies how to create Data and how to
call print_val: (print_val(Data()))

• Needs some description of the expected
behavior as well

• Does not specify how they work internally
⇒ Allows for different implementations

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 6

What is an API (Application Programming Interface)?

Set of operations with well-defined behavior, e.g. header files in C++
Answers the question: How should I write my code to use some library?

Example: Using the STL
std::vector<int> v;
v.push_back(10);
std::cout << v.at(0) << std::endl;

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 7

What is an ABI (Application Binary Interface)?

Like an API, but at the binary, machine-specific, level.

Answers questions like:
• What is the “real” name of print_data(Data &)?
• How do I find the address of the function?
• What should I do with parameters to the function?
• How should the members of Data be stored in memory?
• How do I throw an exception?

Often specified as: How are features of a language implemented?

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 8

Specification vs. Implementation

Different implementations may provide additional functionality
For example:
// OK, within the standard
std::type_info &info = typeid(int);
// OK, implementation defined (by the ABI)
std::cout << info.name() << std::endl;
// Outside of the API, may or may not exist.
info.__do_catch(...);

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 8

Specification vs. Implementation

Different implementations may provide additional functionality
For example:
#include <vector>
class Test : public std::vector<int> {
public:

void examine() {
cout << "start:␣" << _M_impl._M_start << endl;
cout << "finish:␣" << _M_impl._M_finish << endl;
cout << "end:␣" << _M_impl._M_end_of_storage << endl;

}
};

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 9

API Compatibility

Consider the following changes to shared.h in 01-compatibility. Do they
change the API? (Think: Do they break compilation of existing programs?)
1. Change int a to int64_t a?
2. Add a member int c to Data?
3. Add a member std::string c to Data?
4. Change the order of int a and double b?
5. Add a new parameter with default value to print_val?
6. Add a copy/move-constructor to Data?
7. Change print_val to accept a const-reference?

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 10

ABI Compatibility

Consider the following changes to shared.h in 01-compatibility. Do they
change the API? (Think: Do they disallow linking with old code?)
1. Change int a to int64_t a or double a?
2. Add a member int c to Data?
3. Add a member std::string c to Data?
4. Change the order of int a and double b?
5. Add a new parameter with default value to print_val?
6. Add a copy/move-constructor to Data?
7. Change print_val to accept a const-reference?

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 11

API vs. ABI Compatibility

Work at different levels of abstraction: source-code vs. machine code
• API: if all (valid) uses of source code compiles, it is OK
• ABI: if all (valid) uses work without re-compilation, it is OK

⇒ Stable ABIs require a bit more thought...
⇒ ...but avoids re-compilation!

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 12

Different ABIs

There are two major ABIs:
• System V ABI (Linux, MacOS on AMD64/ARM64)
• Microsoft ABI (Windows)

Variants for many systems:
• x86-32
• AMD64
• ARM64
• ...

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 14

Integer Types and Endianness

char a{0x08};
short b{0x1234}; // = 4660
int c{0x00010203}; // = 66051
long d{0x1101020304}; // = 73031353092

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 14

Integer Types and Endianness

char a{0x08};
short b{0x1234}; // = 4660
int c{0x00010203}; // = 66051
long d{0x1101020304}; // = 73031353092

08a:

12 34b:

00 01 02 03c:

00 00 00 11 01 02 03 04d:

Bi
g
en
di
an

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 14

Integer Types and Endianness

char a{0x08};
short b{0x1234}; // = 4660
int c{0x00010203}; // = 66051
long d{0x1101020304}; // = 73031353092

08a:

34 12b:

03 02 01 00c:

04 03 02 01 11 00 00 00d:

Li
ttl
e
en
di
an

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 15

The Type System

The type system is not present in the binary! It just helps us to keep track of
how to interpret bytes in memory!

struct foo {
int a, b, c;

};

foo x{1, 2, 3};
int y[3] = {1, 2, 3};
short z[6] = {1, 0, 2, 0, 3, 0};

All look the same in memory!

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 16

Other Types

• Each type has a size and an alignment
• Members are placed sequentially, respecting the alignment

Example:

struct simple {
int a{1};
int b{2};
int c{3};
long d{100};
int e{4};

};

a b
c padding

d
e padding

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 18

Overview

rax
rcx

rdx
rbx
rsp

rbp
rsi
rdi

r8
r9
r10
r11
r12
r13
r14
r15

RegistersStack
Low

High

Stack frame

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 18

Overview

rax
rcx

rdx
rbx
rsp

rbp
rsi
rdi

r8
r9
r10
r11
r12
r13
r14
r151

2

3
4

5
6

RegistersStack
Low

High

Stack frame

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 19

Rules (simplified)

1. If a parameter has a copy constructor or a destructor:
• Pass by hidden reference

2. If a parameter is larger than 4*8 bytes
• Pass in memory

3. If a parameter uses more than 2 integer registers
• Pass in memory

4. Otherwise
• Pass in appropriate registers (integer/floating-point)

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 20

Primitives
int fn(int a, int b, int c);

int main() {
int r = fn(1, 2, 3);

}

mov $1, %edi
mov $2, %esi
mov $3, %edx
call fn
mov %rax, "r"

rdi rsi rdx rcx r8 r9 rax

1 2 3 r

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 21

“Simple” Types 1
struct large { int a, b; };
int fn(large a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

mov "z", %rdi
mov $3, %rsi
call fn
mov %rax, "r"

rdi rsi rdx rcx r8 r9 rax

z 3 r

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 22

“Simple” Types 2
struct large { long a, b; };
int fn(large a, long b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

mov "z", %rdi
mov $3, %rsi
call fn
mov %rax, "r"

rdi rsi rdx rcx r8 r9 rax

z.a z.b 3 r

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 23

“Simple” Types 3
struct large { long a, b, c; };
int fn(large a, long b);
int main() {

large z{ 1, 2, 3 };
int r = fn(z, 3);

}

push "z.c"
push "z.b"
push "z.a"
mov $3, rdi
call fn
mov %rax, "r"

rdi rsi rdx rcx r8 r9 rax

stackz3 r

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 24

“Complex” Types
struct large { /*...*/ };
int fn(large a, long b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

;; Copy z into z'
lea "z'", %rdi
mov $3, %rsi
call fn
mov %rax, "r"

large is not trivially copiable, has a destructor or a vtable

rdi rsi rdx rcx r8 r9 rax

&z' 3 r

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 25

By Reference
struct large { int a, b; };
int fn(large &a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

lea "z", $rdi
mov $3, %rsi
call fn
mov %rax, "r"

rdi rsi rdx rcx r8 r9 rax

&z 3 r

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 26

Returning “Simple” Types 1
struct large { int a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

mov $10, %rdi
call fn
mov %rax, "z"

rdi rsi rdx rcx r8 r9 rax

10 z

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 27

Returning “Simple” Types 2
struct large { long a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

mov $10, %rdi
call fn
mov %rax, "z"
mov %rdx, "z"+8

rdi rsi rdx rcx r8 r9 rax

10 z.az.b

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 28

Returning Large or “Complex” Types
struct large { long a, b, c; };
large fn(int a);

int main() {
large z = fn(10);

}

lea "z", %rdi
mov $10, %rsi
call fn

rdi rsi rdx rcx r8 r9 rax

&z 10 &z

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 28

Returning Large or “Complex” Types
struct large { long a, b, c; };
large &fn(large &out, int a);

int main() {
large z = /* uninitialized */;
fn(z, 10);

}

lea "z", %rdi
mov $10, %rsi
call fn

rdi rsi rdx rcx r8 r9 rax

&z 10 &z

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 29

Conclusions

• Passing primitives by value is cheap
• Passing simple types by value is cheap

• As long as they are trivially copiable and destructible
• As long as they are below about 4 machine words or about 64 bytes

• Returning small simple types by value is usually cheap, even without RVO
• Types that are not trivially copiable are more cumbersome: pass them by
reference

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 31

Scenario

struct Base {
virtual ~Base() = default;

int data{0x1020};

virtual void fun(int x) = 0;
};

void much_fun(Base &x) {
x.fun(100);

}

How do we know what to call here?

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 32

Virtual Function Tables – vtables (System V)

Idea: Put some type info in the objects!
This is called a virtual function table or vtable:

Offset Symbol
0 derived::~derived() doesn’t call delete
8 derived::~derived() calls delete

16 derived::fun(int)

Note: More complex for multiple and virtual inheritance!

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 33

Pointers to Members
struct MyClass {

virtual int virtual_member() { return 1; }
};
struct DerivedClass : public MyClass {

int virtual_member() override { return 2; }
};
int main() {

int (MyClass::* ptr)() = &MyClass::virtual_member;
cout << sizeof(ptr) << endl; // How large?
DerivedClass c;
return (c.*ptr)(); // Which one is called?

}

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 34

Pointers to Members

struct member_ptr {
// Pointer or vtable offset
size_t ptr;

// Object offset (for multiple inheritance)
size_t offset;

};

This is why it is not possible to cast pointers to members into void *.

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 36

Motivation

Why should we know about linking?
• Understand and fix errors/warnings
• Motivates the design of some parts of C++

• Easier to remember “rules” when you know why
• Allows reasoning about optimizations (inlining)
• Utilize the powers of dynamic linking (plugin systems, etc.)

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 37

What Does the Linker Do?

Remember the first program (00-different-compilers)

• How does the compiler know where print_cr and print_val are
located?

• Why can’t I modify the parameters to the functions?

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 38

A Program from the Linker’s Perspective

gcc.o

clang.o

Linker Output

Symbol tables Merged table, resolved refs

• objdump -t <file> – show symbol table
• objdump -t -C <file> – show symbol table
• objdump -d -C <file> – disassemble code

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 39

A Program from the Linker’s Perspective

main

Data::Data
print_cr
print_val

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 39

A Program from the Linker’s Perspective

main

Data::Data
print_cr
print_val

55 48 89 e5 48 83 ec 20
c7 45 fc 00 00 00 00 48
8d 7d f4 e8 -- -- -- --
48 8d 7d f4 e8 -- -- --
-- 48 8b 45 f4 48 89 45
ec 48 8b 7d ec e8 -- --
-- -- 31 c0 48 83 c4 20
c3

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 41

Brief history: Static libraries

What if we have a “large” library? Inconvenient to distribute many .o files...

lib1.o

lib2.o

ar lib.a main.o

g++

main

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 42

What is an .a-file?

Consider the code in 10-static-lib.

• ar t <file> – list members
• ar x <file> – extract members

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 43

Problems with static linking

Static linking copies code into the final binary. This means:
• The final binary becomes larger, both on disk and in RAM
• Fixing a bug in the library requires re-linking all programs using it

Gotchas:
• The .a-file must appear after inputs that are using it.
• Only archive members that are used are included!

• For example: remove call to print_greeting from main.cpp
• On Windows, libraries (.lib) behave more like regular object files.

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 45

Dynamic Linking

Idea: leave symbols undefined and resolve them when loading the program
We then let the dynamic linker handle linking of shared libraries
• Avoids copies of code, both on disk and in RAM
• We can easily update the library
• Makes loading code at runtime easier

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 46

Practicalities

• Modelled to work like static linking
• This is what the -l flag does. Two forms:

• -l<x> ⇒ finds lib<x>.so
• -l:<x> ⇒ finds <x>

• Default: system’s library path, we can use -L to modify this
• The dynamic linker also needs to know where to look

• rpath or runpath
• Code must be position independent: -fPIC

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 47

Dynamic linking

Consider the code in 11-shared-lib

• Now, what happens if we uncomment print_greeting?

• readelf -h <program> – show headers
• readelf -l <program> – show program headers
• readelf -d <program> – inspect dependencies
• objdump -T <program> – inspect dynamic symbol table
• ldd <program> – inspect behavior of dynamic linker

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 48

Multiple dynamic libraries

Consider the code in 12-multiple. We have two libraries, lib1.so and
lib2.so linked to our executable.

• Try uncommenting lib_name in lib1.cpp
• Try uncommenting print_greeting in lib1.cpp
• Try uncommenting check_int in main.cpp

⇒ The symbols in all libraries form a single namespace!
• Order based on appearance on command line

• How do we fix this?

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 49

Library Isolation

Linux (UNIX in general):
• Symbols have visibility:

• default – visible outside the shared object
• hidden – only visible inside the shared object
• internal – hidden, but only called from the same module
• protected – can not be overridden by another module

• We can set default with -fvisibility=hidden
• We can use static and anonymous namespaces.

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 50

Differences on Windows

Windows takes a different approach:
• Symbols are hidden by default

• Explicitly export symbols __declspec(dllexport)
• Explicitly import symbols __declspec(dllimport)

• Compiling a DLL makes the DLL and a import library (.lib)
• Link with the import library to use the DLL
• Search path typically include executable’s path by default

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 51

Calling the Dynamic Linker

We can load libraries dynamically by calling the dynamic linker (-ldl on
Linux):
• dlopen or LoadLibrary – load a shared library
• dlclose or FreeLibrary – unload a shared library
• dlsym or GetProcAddress – get the address of a symbol

Note: name mangling differs between systems, even for C!

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 52

Calling the Dynamic Linker

Consider the code in 13-dlsym

• Try running ./main ./lib1.so
and ./main ./lib2.so

• What happens if we specify RTLD_NOW?
• Why do we need RTLD_GLOBAL?
• Why don’t we get an error when linking lib2.so?

• We can add -Wl,-z,defs
• Why can’t we add do_fun_stuff in main executable?

• We can link with -rdynamic

1 Introduction
2 APIs and ABIs
3 – Object Layout
4 – Function Calls
5 – Virtual Functions
6 Linking
7 – Static Linking
8 – Dynamic Linking
9 – Creative Use of Dynamic Linking

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 54

What Does the Compiler Assume?

Consider the code in 14-dynamic-rebind

• Try running ./main
and LD_PRELOAD=./inject.so ./main

• Unless visibility is set, symbols may be overwritten
⇒ Compiler is not able to inline/reason about functions

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 55

Patch Internal Functions

Consider the code in 15-patch:

• If you know the internals of a library, it is possible to intercept and patch
functionality...

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 56

Instrument a program

Consider the code in 16-instrument:

• We can inject our minimal library anywhere we want
• For example: LD_PRELOAD=./track.so /usr/bin/echo hello

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 57

Windows

• Stronger guarantees by default: compiler is able to reason about the code
to a larger extent

• Strong isolation leads to other peculiarities. In particular, we may have
multiple copies of the same thing:
• metadata: must compare names of types, rather than pointers
• globals: sometimes we have multiple heaps, must allocate and free from

the same DLL
• All symbols must be resolved, more work to make “pluggable” interfaces
• We can still do “bad things”, but they require more work

ABIs and (Dynamic) Linking in C++ Filip Strömbäck December 18, 2024 58

Implications for library design

There are many things to consider when writing libraries. Good API design is
important, and we need to consider how linking works:
• Consider visibility, especially for internal functions
• Memory allocated by your library might need to be freed by your library
• You might have multiple instances of code and/or data

Filip Strömbäck

www.liu.se

www.liu.se

	Introduction
	APIs and ABIs
	– Object Layout
	– Function Calls
	– Virtual Functions
	Linking
	– Static Linking
	– Dynamic Linking
	– Creative Use of Dynamic Linking

