
TDDD38 - Extra lecture
The regex header

Eric Elfving

Department of Computer and Information Science
Linköping University

1 / 11

a regular expression (sometimes called a
rational expression) is a sequence of
characters that define a search pattern, mainly
for use in pattern matching with strings, or
string matching, i.e. "find and replace"-like
operations.

Wikipedia1

1https:
//en.wikipedia.org/wiki/Regular_expression

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

2 / 11

We have the three "standard" method for regular
expressions in the STL;

• Searching - find all occurancies of a pattern in
string regex_search

• Matching - does the string match the pattern?
regex_match

• Replacing - replace matching substrings
regex_replace

All require a regex object.

3 / 11

class regex

A regex object can't be used by itself, but is needed
with the regex functions. In the simplest case, a regex
object is initiated with the pattern.
std::regex pattern {"[0-9]{3,5}"};

By default, a modified ECMAScript version of regular
expressions is used.2

2http:
//en.cppreference.com/w/cpp/regex/ecmascript

http://en.cppreference.com/w/cpp/regex/ecmascript
http://en.cppreference.com/w/cpp/regex/ecmascript

4 / 11

Raw strings

A problem with the regex syntax is that backslashes are
used alot. Let's say that we want to look for the string
\begin (yes I'm using LATEX). Then the regex syntax
requires two backslashes. The problem is that C++ also
requires two backslashes to get a literal backslash in a
string (and not some escape character)...
regex r {"\\\\begin"};

5 / 11

Raw strings

There is a solution! In C++11, raw strings were added.
The syntax is
R"<delimiter>(<raw string>)<delimiter>",
where <delimiter> is an optional 0-16 character
string.
string s1 = R"(a raw string)";
string s2 = R"RAW(another raw string)RAW";

6 / 11

regex_search

The regex_search function returns true if the
pattern is found somewhere in the given string.
int main() {
ifstream students_file {"all_registered_students.txt"};
string student;
regex pattern {"TDDD38"};
while (getline(students_file, student)) {

if (regex_search(student, pattern)) {
cout << student;

}
}

}

7 / 11

regex_search

Can also use a match_results (smatch for
std::stringmembers or cmatch for c-strings) to
store the first matching substring and groups:
int main() {

string s {"this subject has a submarine as a subsequence"};
smatch m;
regex e {"\\b(sub)([^]*)"}; // matches words beginning by "sub"

while (regex_search (s,m,e)) {
for (auto x:m) cout << x << " ";
cout << endl;
s = m.suffix().str();

}
}

subject sub ject
submarine sub marine
subsequence sub sequence

8 / 11

regex_iterator

An alternative to changing the search string in a loop is
using a regex_iterator
string s {"this subject has a submarine as a subsequence"};
regex e {R"<>(\b(sub)([^]*))<>"}; // matches words beginning by "sub"

regex_iterator<string::iterator> rit { begin(s), end(s), e };
// or sregex_iterator

regex_iterator<string::iterator> rend;

for (; rit != rend; ++rit) {
for (auto && x: *rit) cout << x << ' ';
cout << endl;

}

Dereferencing a regex_iterator gives a
match_results.

9 / 11

match_results

A match_results object works like a container 3, but
have some special members...
int main ()
{

cmatch m;
regex_match("subject", m, regex{"(sub)(.*)"});
cout << m.format ("the expression matched [$0].\n")

<< m.format ("with sub-expressions [$1] and [$2].\n");
}

the expression matched [subject].
with sub-expressions [sub] and [ject].

3have iterators, size, capacity...

10 / 11

regex_match

Works like regex_search but only returns true if the
string exactly matches the pattern.
bool is_int(string const & str) {

static regex pattern {"[1-9][0-9]*"};
return regex_match(str, pattern);

}

int main() {
string line;
cout << "Enter an integer: ";
getline(cin, line);
while (!is_int(line)) {

cout << "WRONG, enter a new value: ";
getline(cin, line);

}
}

Also have a variant with match_results.

11 / 11

regex_replace

Returns a copy of the target string with all matched
sequences replaced according to a specified format.
int main ()
{

string s {"there is a subsequence in the string\n"};
regex e {"\\b(sub)([^]*)"};

cout << regex_replace(s, e, "$1-$2");
}

there is a sub-sequence in the string

www.liu.se

www.liu.se

