
TDDD38 - Extra lecture
Pointers

Eric Elfving

Department of Computer and Information Science
Linköping University

1 / 11

Spot the error

void fun() { /* ... */ }

class X { /* ... */ };

void bar() {
X * x = new X;
fun();
delete x;

}

2 / 11

Possible memory leak!
(if fun throws)

3 / 11

use unique_ptr

void fun() { /* ... */ }

class X { /* ... */ };

void bar() {
auto x = make_unique<X>(/* args forwarded to X's constructor */);
fun();
/* x is automatically destroyed */

}

Helper function make_unique was added in C++14.
C++11:
unique_ptr<X> x { new X };

4 / 11

unique_ptr is a class made for single ownership with
pointer semantics1. Cannot be copied but can be
moved. Has the following intresting member functions:

• get Returns the stored raw pointer

• release Releases the resource

• reset(p) Releases the resource and stores p
instead.

1Has overloads for standard pointer operations

5 / 11

shared_ptr

shared_ptr is a reference counted object where
several can share the same stored pointer.
{

auto x = make_shared<X>();
{

auto x2 = x;
}

}

make_shared is available in C++11...
shared_ptr has an internal use_count - number of
shared_ptrs sharing this resource.

6 / 11

weak_ptr

A weak_ptr can share a resource with a shared_ptr
without increasing the use count - the resource will still
be released when all shared_ptrs using it have been
destroyed. Has two intresting members:

• expired - is the resource available.

• lock - return a shared_ptr if not expired.

7 / 11

Custom deleter

Both unique_ptr and shared_ptr uses standard
delete to release the resource. What happens if we
want something else?
void deleter(int * ptr) {

cout << "Deletes " << *ptr;
delete ptr;

}
...
shared_ptr<int> p { new int{234}, deleter };

Note: unique_ptr takes the type of the deleter as a
template parameter as well.

8 / 11

Watch Stephan T. Lavavejs introduction for a great
presentation. It's a bit old (2010), but has great
content. The smart pointers starts at approx 15 min.
https://channel9.msdn.com/Series/

C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-/

C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-3-of-n

His entire series is highly recommended (even though
it's old).

https://channel9.msdn.com/Series/C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-/C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-3-of-n
https://channel9.msdn.com/Series/C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-/C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-3-of-n
https://channel9.msdn.com/Series/C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-/C9-Lectures-Stephan-T-Lavavej-Standard-Template-Library-STL-3-of-n

9 / 11

Prefer usage of smart pointers instead of raw ponters!
Sadly, sometimes we might have restrictions so that
this can't be done... The GSL2 defines a wrapper to
mark your raw pointers as owning its resouce to make
resourse handling and sharing easier.

2Guideline Support Library, part of the
https://github.com/isocpp/CppCoreGuidelines/

10 / 11

template <typename T>
using owner = T;
...
owner<int *> p = new int{123};

It won't change anything except your statical code
which means no overhead.

By using owner or some real container / smart pointer
everywhere where ownership is implied, usage of
normal pointers are ok! - A normal pointer is a
non-owning reference to an object someone else
manages.

11 / 11

owner<X*> compute(args) // It is now clear that ownership is transferred
{

owner<X*> res = new X{};
// ...
return res;

}

www.liu.se

www.liu.se

