
TDDD38 - Extra lecture
The chrono header

Eric Elfving

Department of Computer and Information Science
Linköping University

1 / 7

The <chrono> header has three basic types;

• duration represents a span of time (count
number of ticks with a specific period)

• time_point to represent a specific position in
time. Defined as a duration from a specific
epoch

• Clocks - relate a timepoint to a physical time.

2 / 7

Clocks

There are at least three clocks available:

system_clock Using the system-wide realtime clock -
good to get actual time.

steady_clock monotonic and stable. Member now will
never return a value smaller than a
previous call and each tick will be equal in
time - to calculate difference in time.

high_resolution_clock The clock with highest
precision (smallest tick period). Usually
the same as steady_clock or
system_clock

3 / 7

Examples

duration<int,ratio<60*60*24> > one_day (1);

system_clock::time_point today = system_clock::now();
system_clock::time_point tomorrow = today + one_day;

std::time_t tt;

tt = system_clock::to_time_t (today);
std::cout << "today is: " << ctime(&tt);

tt = system_clock::to_time_t (tomorrow);
std::cout << "tomorrow will be: " << ctime(&tt);

ctime takes a time_t * and returns some string
(const char *) representation...

4 / 7

Examples

auto now = system_clock::now();
time_t tt { system_clock::to_time_t(now) };
cout << "Todays date: " << put_time(localtime(&tt), "%Y-%m-%d") << endl;

Todays date: 2015-12-01

Uses put_time from <iomanip>, see
http://www.cplusplus.com/reference/
iomanip/put_time/ for all format specifiers.

http://www.cplusplus.com/reference/iomanip/put_time/
http://www.cplusplus.com/reference/iomanip/put_time/

5 / 7

Examples

steady_clock::time_point t1 = steady_clock::now();

// Do some complicated stuff...

steady_clock::time_point t2 = steady_clock::now();

duration<double> time_span = duration_cast<duration<double>>(t2 - t1);

std::cout << "It took me " << time_span.count() << " seconds.";
std::cout << std::endl;

6 / 7

Examples

class Timer
{

using sc = std::chrono::steady_clock;
public:

Timer(): start{sc::now()}, stream{std::cout} {}
Timer(std::ostream & os): start{sc::now()}, stream{os} {}
~Timer()
{

auto duration = sc::now() - start;
auto diff = duration_cast<duration<long double>>(duration);
stream << "lived for " << diff.count() << "seconds\n";

}
private:

sc::time_point start;
std::ostream & stream;

};

7 / 7

User-defined literals

There are a few user-defined literals for duration values
(in C++14)
auto lecture_length = 2h;

See http://en.cppreference.com/w/cpp/
chrono/duration for all.

http://en.cppreference.com/w/cpp/chrono/duration
http://en.cppreference.com/w/cpp/chrono/duration

www.liu.se

www.liu.se

