
TDDD38 - Extra lecture
A rant on the auto keyword and
range-based for-loops

Eric Elfving

Department of Computer and Information Science
Linköping University

1 / 10

C++11's range-based for-loops are awesome:
they're less verbose than traditional for-loops,
they handle both arrays and containers in a
generic and extensible manner, and they allow
users to focus on the elements they're
interested in instead of iterators / pointers /
indices.

Stephan T. Lavavej (STL) in N3853

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3853.htm

2 / 10

This is a summary of standard documents N3853 and
N3994, both conserning introduction of an inproved
syntax for range-based for-loops.
for (elem : container)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3853.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3994.htm

3 / 10

Even if we are using auto, with the current syntax it's
easy to do the wrong declaration of elem!

4 / 10

auto

for (auto elem : c)

Semantically the same as
for (auto it = begin(c); it != end(c); ++it) {

auto elem = *it;
}

• Each element is copied! (probably not efficient and
will give compile errors for uncopiable types)

• Alterations of elem will only change the copy.

5 / 10

auto &

for (auto & elem : c)

Better

+ will modify the actual elements.

+ will not make copies.

- Will not work for proxy objects!
vector<bool> is a classic example. Stores each
bool value as one bit. One bool is one byte so
accessing one element will give a temporary proxy
object instead of the actual value. A reference can't
bind temporaries.

6 / 10

const auto &

for (const auto & elem : c)

+ Will bind to temprary values.

- Obviously will not alter elements.

7 / 10

auto &&

for (auto && elem : c)

Looks like a rvalue-reference, but auto will work
together with reference collapsing to work with any
expression category!
Called universal reference by Scott Meyers1, now
standardized as forwarding references.

⇒ This should be the default choice with the new
syntax according to STL.

1https://isocpp.org/blog/2012/11/
universal-references-in-c11-scott-meyers

https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers

8 / 10

Why a new syntax?

• Easier for novices (no index / iterator or explicit
auomatic type deduction).

• Easier to read (less visual noise).

• Easier to do the right thing (no problem with type
of elem)

9 / 10

What about constness?

This [constness] is controlled by the range's
type. If the range is vector<int>, elem will
be modifiable. If the range is
const vector<int>, elem will be const.
If the range is a braced-init-list, elem
will be const (because
initializer_list<E>::begin() returns
const E *).

N3853

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3853.htm

10 / 10

What about constness?

The old syntax will (of course) still be available if you
want to limit yourself to a const reference!
STL also proposes2 some alternatives for syntax if EWG
(evolution working group) wants it in the language:
for (const elem : range)

for (elem : const range)

for const (elem : range)

2in N3994

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3994.htm

www.liu.se

www.liu.se

