
File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 50

Classes

A class is a type – two syntactic choices:

• struct – typically for objects with public members only (“behaviourless aggregates”)

• class – otherwise

• class type is a common notation in C++ for class, struct, and union types

The class has module properties.

• encapsulates its members

• access to members can be controlled by access specifiers and friend declarations

– public – access by anyone – default for struct

– private – access by the class’ member functions only – default for class

– protected – access by subclasses – “public” for subclasses, “private” for others

– friend – can be a global function; a specific member function of another class, or a class (i.e. all member functions of that class)

– a friend declaration is not transitive, i.e. friendship is not inherited

– beware – friendship creates a stronger coupling than derivation

Special rules describe the scope of names declared in classes – class scope

• not only the declarative region made up of the class definition itself, but also, e.g. separately defined member function bodies

Class objects in C++ can be either statically declared objects, or allocated dynamically and referred by pointers.

• makes the C++ object model quite different from many other object-oriented languages

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 51

Class members

Class members can be of four kinds:

• data members

• member functions

• nested types – e.g. a nested class, a nested alias declaration (using), or a nested typedef

• enumerators – acts as static, constant data members – enum { Up, Down, Left, Right };

A data member or member function can be

• non-static – “instance member” – each object have its own copy

• static – “class member”

A member function can be

• non-const – allowed to modify the state of objects

• const – can not modify the state of objects

– important to declare member functions const if they are not to modify object state

– some const functions may need to alter a data member – declare the data member mutable

– be “const correct”, sooner or later you will otherwise get into trouble…

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 52

Class String definition, selected parts (1)

class String
{
public:

using size_type = std::size_t; // nested type (alias declaration)

String() = default; // default constructor, compiler generated
String(const String&); // copy constructor
String(String&&) noexcept; // move constructor
String(const char*); // type converting constructor, from C string
String(size_type, char);
String(std::initializer_list<char>);

~String(); // destructor

String& operator=(const String&) &; // copy assignment operator, ref-qualifier (lvalues only)
String& operator=(String&&) & noexcept; // move assignment operator
String& operator=(const char*) &; // type converting assignment operator

size_type length() const; // const member function – accessor function
bool empty() const;
void clear(); // non-const member function – mutator function

const char* c_str() const; // type conversion to C string
explicit operator const char*() const;

void swap(String&) noexcept; // swap content with other String

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 53

Class String definition, selected parts (2)

private:
static char empty_rep_[1]; // static, null-terminated C string to represent empty string

size_type size_{ 0 }; // NSDMI
char* p_{ empty_rep_ };

// Internal helper functions
void construct_(const char*, size_type);
void construct_(size_type, char);
void construct_(std::initializer_list<char>);
void append_(const char*);
void append_(char);

};

empty_rep_ is defined in the implementation file:

char String::empty_rep_[1]; // initialized to ’\0’

A non-empty String has its own, dynamically allocated memory – a null terminated character array (“C string”).

’\0’

0size_:

p_:

’C’ ’+’ ’+’ ’\0’

3size_:

p_:

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 54

Creating and operating on class objects

Class objects – variables and constants – can be either automatically och dynamically created/destroyed.

int main()
{

String s; // variable String

const String cs{ s }; // constant String – only const member functions can be applied

cout << cs.c_str() << " has length " << cs.length() << ’\n’; // the dot operator

String* ps{ new String }; // dynamically created String object, pointed to by ps

const char* p{ ps->c_str() }; // the arrow operator to access member in pointed-to object

String& rs{ s }; // reference to String – alternative name for s

cout << rs << endl; // a reference is automatically dereferenced when used
}

• another implicitly defined operator is the important scope resolution operator ::

class::member // qualified name

• there are quite a few more implicitly defined operators

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 55

Definition of member functions

• separately, outside the class definition, e.g on an accompanying implementation file String.cc

#include "String.h"
…
String::size_type String::length() const
{

return size_;
}

– String:: must precede the name of any separately defined member – a qualified name

– also when from outside class scope referring to a member, such as size_type

– the parameter list and the function body is within class scope of String

• within the class definition (inclass definition)

class String
{

…
size_type length() const { return size_; }
…

};

• member functions defined inclass are automatically inline functions

• separately defined member functions can explicitly be declared inline

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 56

Special member functions

• default constructor – initializes a new object without any arguments

• copy constructor – initializes a new object from an existing object of the same type

• move constructor – typically used if the source is a temporary object of the same type

• copy assignment – assigns from an object of the same type

• move assignment – typically used if the right hand side is a temporary object of the same type

• destructor – cleans up when an object cease to exist, typically releasing resources

Compiler generated (implicitly declared/defined) if not declared by programmer (there are detailed rules), with the following semantics:

• default constructor

– data members with default initialization (class type members) are default initialized, in declaration order

– data members without default initialization are not initialized, e.g. fundamental type members (int, double, pointers, etc.)

• copy constructor,

– member-by-member copy construction from source to destination, in declaration order

• copy assignment

– member-by-member assignment from source to destination, in declaration order

• move constructor, move assignment

– instead of copying content, it is moved from the source to the destination

• destructor

– data members with destruction (class type members) are destroyed, in reverse declaration order

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 57

Constructors

• one is always invoked automatically when class objects are created

• shall initialize the objects to a well-defined state

• cannot be declared to return anything, not even void

• can have parameters – these can have default arguments – can be overloaded – a class can have several constructors

String(const char*);
String(const String&);
String(String&&) noexcept;
String(std::initializer_list<char>);

• default constructor – a constructor which can be used without any arguments

String(const char* s = ""); // if no explicit argument, "" will be used – “two-in-one”

• copy constructor – a constructor with a (first) parameter of the class type – to create a new object as a copy of another

String(const String& other); // creates the new object as a copy of other

• move constructor – a constructor with a (first) parameter of type rvalue reference – to create a new object by emptying another

String(String&& other) noexcept; // creates the new object by pilfering the content of other

• type converting constructor – a constructor which can be invoked with one argument of another type

String(const char* s); // converts C string to String

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 58

Using constructors

Selected by overload resolution.

{
String s1; // default constructor called – empty String created

String s2{ "C++" }; // initializing with string literal – type conversion

String s3{ s2 }; // initializing with another String object – copy

String* p{ new String{"C++"} }; // constructor taking a C string called

vector<String> v(10); // 10 container elements – default constructor used for each

String a[10]; // array element – default constructor is used for each element

String s5{ ’C’, ’+’, ’+’, ’1’, ’1’ }; // constructor taking initializer list
}

Note – the following declaration does not create a default constructed String s

String s();

but this expression does, a temporary object

return String();

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 59

Member initializers

A member initializer list can be used in constructors to initialize data members before the constructor body is executed.

Alternative implementation for String(const char* str), possible if we could be sure the parameter str in never nullptr:

String(const char* s)
: size_{ strlen(s) }, p_{ strcpy(new char[size_ + 1], s) }

{}

• if both an initilizer in the data member declaration, and a member initializer as above, only the member initializer will be executed

• a member initializer list is inserted between the constructor parameter list and the constructor body

– starts with a colon

– initializers are separated with comma, if more than one

• the data members are initialized in declaration order, not in the order initializers are written

– size_ must be declared before p_ , since the value of size_ is used in the initializer for p_

– always write member initializers in the same order as the members are declared

• a member with default initialization will always be default initialized before the execution enters the constructor body

– use initializer, if possible, instead of assignment in constructor body, to avoid “double” initialization

• const and reference members cannot be assigned in the constructor body

– follows from ordinary semantic rules – such types must always be initialized when they are created

• member initializer is the only way to invoke a base class constructor from a subclass constructors

Derived(parameters) : Base(arguments), … {}

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 60

Destructor

• called automatically when an object is on its way to disappear

– for a dynamically created object (new) when deleted (delete)

• typically used to release resources, e.g. deallocate memory, or closing a file

~String() { if (!empty()) delete[] p_; }

• cannot be declared to return anything – not even void

• have no name – special declaration syntax

• cannot have parameters – cannot be overloaded – a class can only have one destructor

• explicitly called only in special cases

{
String s; // s created automatically – constructor invoked

String* p{ new String }; // Object created dynamically – constructor invoked
…
delete p; // Dynamic object deallocated – destructor implicitly invoked
p = nullptr;
…

} // declaration block for s is terminated – s disappears – the destructor is implicitly invoked

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 61

The this pointer

One problem with the calling syntax for member functions is that the object don’t belong to the parameter list

s.at(7);

as in a traditional function call

at(s, 7);

where the object s is accessible in the function through the corresponding parameter.

• what if you need to refer to the object in question in a member function – use the this pointer

– in a non-static member function this points to the object for which the function is called

– in a non-const member function this have type String*

– in a const member function this have type const String*

– volatile can also appear, e.g. const volatile String*

– move semantics can also be applied to *this (comes later)

• this is usually used implicitly to access members – an explicit reference is written, e.g.

size_type String::length() const
{

return this->size_;
}

– length() is const – the this pointer have type const String* – the object is const in this context – size_ cannot be modified

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 62

Default constructor

Since there are other constructors declared, a default constructor would not be generated, according to rule.

• a naïve, straight-forward way to define the default constructor would be

String() {}

– the data members will be initialized according to the initializers in their declarations

• by defaulting, we ask the compiler to generate

String() = default;

– a defaulted function can be more efficient than a hand-written one

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 63

Type converting constructor

A constructor taking one argument of another type defines a type conversion, possibly implicit.

• declaring explicit means that it cannot be invoked to make implicit type conversions

class String
{
public:

String(const char*); // not explicit
…

};

• If operator=(const char*) had not been declared for String, the assignment below would still be allowed

s = "This is a literal of type const char*";

– semantically equivalent to

s = String("This is a literal of type const char*");

– the literal of type const char* is converted to a temporary object of type String this constructor

– operator=(String&&) can then be applied to s and the temporary object

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 64

Copy constructor

Deep copy.

• the compiler generated constructor would just copy size_ and p_ – the character array would be shared by several object

• a new object is to be created – no history to take into account if something goes wrong

• the helper function construct_ takes care of the greedy details – memory allocation and copying value from other

String::String(const String& other)
{

construct_(other.p_, other.size_);
}

void String::construct_(const char* cstr, size_type size)
{

if (cstr != nullptr && size > 0)
{

p_ = strcpy(new char[size + 1], cstr);
size_ = size;

}
}

String s2{ s1 }; // direct initialization syntax

String s2 = s1; // copy initialization syntax

– allocating memory for the character array is the critical part – if new throws (bad_alloc), just bail out – no cleanup required

– copying size is safe – memory for the String object itself (size_ and p_) is already there, assigning int will not fail

3s1

’C’ ’+’ ’+’ ’\0’

3s2

’C’ ’+’ ’+’ ’\0’

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 65

Copy assignment operator

Deep assignment.

s1 = s2;

• left hand side has a history

– dispose of old content

– copy new value from right hand side

• important to do things in the right order

– no object should end up in an undefined state

– make sure to get new memory first

– then make changes

’C’ ’+’ ’+’ ’\0’3s2:

6s1: ’S’ ’c’ ’e’ ’\0’’m’ ’e’’h’

’C’ ’+’ ’+’ ’\0’3s1:

’S’ ’c’ ’e’ ’\0’’m’ ’e’’h’

’C’ ’+’ ’+’ ’\0’3s2:

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 66

Copy assignment operator – straightforward implementation

• the default copy assignment would just assign size_ and p_ – the character array from source object would be shared

• the destination is an existing object – old content to take care of – otherwise the same copy semantics as for the copy constructor

String& String::operator=(const String& rhs) & // ref qualifier – assign to lvalue only
{

if (this != &rhs)
{

char* p{ empty_rep_ }; // in case rhs is an empty String
if (!rhs.empty())

p = strcpy(new char[rhs.size_ + 1], rhs.p_); // if we survive this we’re fine
size_ = rhs.size_;
if (!empty()) delete[] p_;
p_ = p;

}
return *this;

}

• checks if the left and right hand side operands are the same object – self-test

s = s

• performs a deep copy in a strongly exception-safe way – allocates memory before anything is changed – if new throws

– no memory will leak

– none of the objects will be corrupted

• semantics corresponds to built-in assignment – returns a non-const reference (lvalue) to the left-hand side argument

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 67

Copy assignment operator – elegant version

• uses the idiom “create a temporary and swap”

• need a function that can exchange the contents of two objects in a safe way, preferably a nothrow swap

String& String::operator=(const String& rhs) &
{

String{ rhs }.swap(*this); // create a temporary and swap
return *this;

}

• a temporary is created and initialized by the copy construct – deep copy of rhs

• the contents of this and the temporary is swapped

– this now becomes a copy of rhs

– the temporary takes over of the old content of this – especially the character array

• the temporary is destroyed after the swap

– the old dynamic memory for this is deallocated

• if an exception is thrown, it will happen when the temporary is initialized

– strongly exception-safe – no memory will leak – no object will end up in an undefined state

– exception neutral – any exception thrown is propagated further as is

Note. If the elements had been of class type, exceptions could also be thrown when copying the elements,

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 68

Move semantics

One of the big news in C++11 – alternative to classic copy semantics.

• temporary objects are created in different situations – often implicitly

• if such an object is used to initialize or assign another object it is unnecessary to make a copy

– copying can be costly – time and space

– instead move the content of the temporary to the destination object

• how find such objects – they are not visible?

– the compiler knows!

– rvalue-references catches them automatically!

– we just need to be aware of the possibility and have it in mind when we construct classes

String(const String&); // this can catch all kind of objects but
String(String&&) noexcept; // this one is a better match for temporary objects (rvalues)

String& operator=(const String&) &;
String& operator=(String&&) & noexcept;

• implementing move semantics

– an object which resources have been moved must be destructible

– sometimes we want to apply move semantics also to ordinary objects (lvalues)

– an object which have been moved from must be assignable (and copyable)

– the principle should be that an object moved from should be comparable to a default initialized object

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 69

Move constructor

Our implementation use the member functions swap():

String::String(String&& other) noexcept // size_ and p_ are initialized by their NSDMI – empty string
{

swap(other); // swap content with other
}

String s1 = String{ "C++" }; // temporary object (rvalue)

String s2{ std::move(s1) }; // utility function move() converts s1 (lvalue) to String&& (rvalue)

when entering constructor body after move

’C’ ’+’ ’+’ ’\0’

3

’C’ ’+’ ’+’ ’\0’

3

’\0’

0

’\0’

0s2:

s1:

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 70

Move assignment operator

Our implementation uses clear() and swap():

String& String::operator=(String&& rhs) & noexcept
{

clear(); // the left hand side operand is cleared – set to ”empty string”
swap(rhs); // move by swapping content with the right hand side operand
return *this;

}

s1 = std::move(s2);

start state s1 cleared after move

An alternative is to just swap contents for the two objects (there is no precise definition of move semantics).

’C’ ’+’ ’+’ ’\0’

3

’C’ ’+’ ’+’ ’\0’

3

’\0’

0

’\0’

0

’C’ ’+’ ’+’ ’\0’

3

’C’ ’\0’

1s1:

s2:

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 71

Rules for move constructor and move assignment operator generation

• The move constructor is only generated if, the class does

– not have a user declared copy constructor

– not have a user declared copy assignment operator

– not have a user declared move assignment operator

– not have a user declared destructor

• The move assignment operator is only generated if, the class does

– not have a user declared copy constructor

– not have a user declared move constructor

– not have a user declared copy assignment operator

– not have a user declared destructor

Style recommendations for declaring special member functions

• if a special member function is desired, and the compiler can generate it – default it

• if a special member function is not desired, and the compiler will generate it – delete it

• if a special member function is not desired, and the compiler will not generate it – don’t declare it

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 72

The name rule

Things that are declared as rvalue reference can be either an rvalue or an lvalue. The name rule says:

• if it has a name it’s an lvalue

• otherwise, it’s an rvalue

void foo(T&& x) // rvalue reference having a name, x
{

T y{ x }; // x is an lvalue, T::T(const T&) is called
… // x still in scope – it would be dangerous to allow move semantics to be allowed tacitly

}

T&& fie(); // rvalue reference having no name

T x{ fie() }; // T::T(T&&) is called

T fum(); // rvalue having no name (temporary)

T y{ fum() }; // T::T(T&&) is called

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 73

Utility function std::move()

The traditional way to exchange values for two String variables:

void swap(String& x, String& y)
{

String tmp{ x }; // x is copied to tmp by the copy constructor
x = y; // y is copied to x by the copy assignment operator
y = tmp; // tmp is copied to y by the copy assignment operator

}

Both x and y shall receive new values – their old values is not required to be kept when they are copied – move instead

#include <utility>

void swap(String& x, String& y)
{

String tmp{ std::move(x) }; // x is moved to tmp by the move constructor
x = std::move(y); // y is moved to x by the move assignment operator
y = std::move(tmp); // tmp is moved to y by the move assignment operator

}

• std::move() doesn’t really do more than type convert to an rvalue reference – String&& in this case

• this will make the move versions to be chosen instead of the copy versions

Note: move() basically applies static_cast<String&&>(arg)

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 74

Ref-qualifiers for non-static member functions

Extends move semantics to *this – thee options:

• no ref-qualifier

• & ref-qualifier, same as no ref-qualifier

• && ref-qualifier

struct X
{

void fun() &; // OK, *this will be X& – lvalue reference
void fun() &&; // OK, *this will be X&& – rvalue reference
void fun() const &; // OK, *this will be const X& – lvalue reference to const

};

• & and && can be overloaded, in combination with the cv-qualifers

struct X
{

X* operator&() &; // selected for lvalues only
X& operator=(const X&) &; // selected for lvalues only

};

X* p = &X(); // error: takes the address of something temporary (rvalue)

X x;

X() = x; // error: no known conversion for implicit this parameter from X to X&

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 75

Situations where special member functions are used

String g1{ ”Global” }; // g1 is initialized by the type converting constructor for C string

String g2{ g1 }; // g2 is initialized by the copy constructor – direct initialization syntax

String fun(String s) // s is initialized by the copy constructor, unless the argument is a temporary, then move
{

String loc{ s }; // loc is initialized by the copy constructor

loc = s; // loc is assigned by the copy assignment operator

return loc; // a temporary object is created and initialized by the move constructor
} // the local objects s and l are destroyed by the destructor

int main()
{

String g3 = g1; // g3 is initialized by the copy constructor – copy initialization syntax

g2 = fun(g1); // g2 is assigned from a temporary – invokes the move assignment operator
}

Sometimes the temporary used for passing a return value from a function can be elided.

• in such case the value of loc would be directly copied or moved into a destination object

• a common optimization called RVO – Return Value Optimization

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 76

Delegating constructors

A constructor can delegate to another constructor of the same class.

• if empty Strings had been represented in the same way as non-empty Strings, the default constructor could have been written:

String() : String{ "" } {} // delegate to the constructor below

String(const char*);

• an alternative is to let the type converting constructor also represent the default constructor (as we have chosen)

String(const char* = "");

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 77

Ways to restrict and control object creation (1)

Some objects, e.g. stream objects, are not suitable to copy.

• copy construction and copy assignment can be disallowed

• declare delete to remove a special member functions,

• default if you want the compiler to generate

public:
X() = default; // default initialization allowed

X(const X&) = delete; // no copy construction

X& operator=(const X&) = delete; // no copy assignment

• if, e.g., the compiler generated copy constructor is fine, but you want to restrict it for internal use only, default it as protected

protected:
X(const X&) = default;

• if at least one of the destructor, copy constructor or copy assignment operator is declared, the move constructor or move assignment
operator are not generated

– the move constructor and move assignment operator should never be deleted – either declare, if desired, or ignore, if not

• eliminating public constructors does not make a class abstract (derived classes)

Note: a defaulted function must be a member function, a deleted function need not be.

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 78

Ways to restrict and control object creation (2)

Dynamic memory allocation can be disallowed by hiding the predefined global allocation functions.

private:
static void* operator new(size_t) = delete; // plain versions
static void operator delete(void*, size_t) = delete;

static void* operator new[](size_t) = delete; // array versions
static void operator delete[](void*, size_t) = delete;

• these are always static members, even if not explicitly declared so

• there are also nothrow and placement versions of global new/new[] and delete/delete[]

In the context of derived classes there is also the concept of abstract class, for which no objects can be created, except as subobjects of objects
of a derived concrete class.

For a new expression, such as ’new String’, one of these new functions will be called, resulting in a two-step procedure:

• memory is acquired, and, if successful, then

• the constructor is executed to create the object in that memory

For a delete expression, such as ’delete p’, one of these delete functions will be called, also resulting in a two-step procedure:

• the destructor is executed to destroy the object in the memory

• the memory is released

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 79

Type conversion functions

Type conversion from a class to some other type is defined as a conversion function.

• can be declared explicit to disallow implicit use

class String
{
public:

…
operator const char*() const { return p_; } // not explicit
…

};

// If not present: ostream& operator<<(ostream&, const String&);

String s{ "Hello World!" };

cout << s << endl; // Implicit type conversion to const char*

• this type conversion function makes it possible to use predefined operator<< for const char*, if not declared explicit

– such conversion can cause much more problems than it solves

– be aware of possible type conversion sequences for arithmetic types

– explicit solves such problems but allows explicit use, e.g.

cout << static_cast<const char*>(s) << endl;

• an ordinary member function doing the same can be an alternative, or a complement – c_str()

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 80

Static members

String have a static data member to represent the empty string value.

• member functions and data members declared static are common for all object belonging to a class – class members.

class C
{

static int s; // static data member declaration
static int get_s(); // static member function declaration

};

int C::s{}; // static data member definition, explicitly initialized

int C::get_s() { return s; } // static member function definition

• Static members can be accessed in two ways:

– class name and the scope operator (qualified name)

C::get_s()

– an object and the dot operator, or a pointer to an object and the arrow operator

object.member

pointer-to-object->member

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 81

A class, its operations, namespaces, and name lookup

A nonmember function belonging to a class is an operation of that class, no less than a member function.

• natural to declare such non-member functions in the same namespace as the class

• argument dependent lookup (ADL) is applied to unqualified function names and depend upon the arguments given in the call

– if a member function turns up, ADL does not occur

– the set of namespaces searched during ADL depends upon the types of the function parameters

– at least namespaces containing the parameter types belong to the set of searched namespaces

• there are known problems – ADL may lead to unpleasant “surprises”

A namespace is a simple module construct.

• encapsulates the declarations within it – access controlled by using directives and using declarations

using namespace std; // opens the entire standard namespace – all names becomes directly visible

using std::string; // introduces the name string, as if it was declared at this point

• can be added to, successively

• have influence on name lookup

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 82

String and namespace

String is encapsulated in a namespace named IDA_String.

• first introduced in String.h (original namespace definition)

namespace IDA_String
{

class String { … };
…

}

#endif

• added to in String.cc (extension namespace definition)

#include "String.h"

namespace IDA_String
{

Separate definitions for String member functions
}

• a qualified name including the namespace name can alternatively be used:

IDA_String::String::size_type IDA_String::String::length() const { … }

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 83

String iterators

String is a container storing elements of type char, and should as such have iterators.

for (auto it = begin(s); s != end(s); ++i) …

• String iterators can be defined as character pointers and implemented as random access iterators

using iterator = char*;
using const_iterator = const char*;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

– iterator operators are given by the ordinary pointer operators: *, ->, ++, --, etc.

– std::reverse_iterator is a standard template utility class to define reverse iterators, given the forward iterators iterator and
const_iterator

– usually iterator and const_iterator must be defined as classes

• the full set of iterator member functions are defined, some examples

iterator begin() { return iterator(p_); }
const_iterator begin() const { return const_iterator(p_); }
iterator end() { return iterator(p_ + size_); }
const_iterator end() const { return const_iterator(p_ + size_); }

Iterators will be covered in the standard library lectures.

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 84

Some recommendations for single class design (1)

• a class should do one thing, and do it well

• members not to be accessed directly should be private (or protected)

• member functions that does not modifying the state of the objects shall be const

• can the constructors initialize the object in all desired ways?

• declare and initialize data members in the same order.

– the declaration order determines the initialization order, so be consistent with that

• prefer initialization to assignment in constructors

– often more readable

– avoids “double initialization” of default initialized members

• does the compiler generated copy constructor, copy assignment operator, and destructor work, or must they be defined?

• copy and destroy consistently

– if you write/disable the copy constructor or the copy assignment operator, you probably need to do the same for the other

– if you write copy functions, you probably need to write a destructor, and vice-versa

• explicitly enable or disable copying (copy constructor and copy assignment)

– if desired and compiler versions works fine – default both

– if not desired – delete both

– if desired but the compiler generated versions does not work correctly – write both

– deleting a function declares it private – don’t delete move constructor or move assignment operator if their copy versions are allowed

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Single class design 85

Some recommendations for single class design (2)

• make data members private, except in behaviourless aggregates (C-style structs)

– std::pair is defined as a struct with only public members

• don’t give away your internals

– let e.g. member access functions return reference to const or pointer to const

• avoid providing implicit conversions

– eliminates or minimizes creation of temporary objects by type converting constructors and function

– prefer to declare converting constructors and conversion functions explicit

– define optimized operator overloadings for the mixed type operation to be allowed

• whenever it makes sense, provide a no-fail swap

– nice things can be done using swaps

• design and write error-safe code

• don’t optimize prematurely – don’t inline by default, it leads to higher coupling

– profilers are good at telling you which functions you should mark inline

– profilers are bad at telling you which functions you should not have marked inline

– inline may not even matter for your compiler…

