TDDD38 APIC++ Single class design 50
Classes

A classis atype—two syntactic choices:
« struct —typically for objects with public members only (“behaviourless aggregates”)
« class— otherwise

« classtypeisacommon notation in C++ for class, struct, and union types

The class has module properties.
« encapsulates its members
« access to members can be controlled by access specifiers and friend declarations
— public — access by anyone — default for struct
— private — access by the class’ member functions only — default for class
— protected —access by subclasses—“public” for subclasses, “private” for others
— friend —can be aglobal function; a specific member function of another class, or aclass (i.e. all member functions of that class)
— afriend declaration is not transitive, i.e. friendship is not inherited
— beware - friendship creates a stronger coupling than derivation

Special rules describe the scope of names declared in classes — class scope
« not only the declarative region made up of the class definition itself, but also, e.g. separately defined member function bodies

Class objectsin C++ can be either statically declared objects, or allocated dynamically and referred by pointers.
« makes the C++ object model quite different from many other object-oriented languages

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Single class design 52
Class String definition, selected parts (1)

class String

{

public:
using size_type = std::size_t; /1 nested type (alias declaration)
String() = default; /1 default constructor, compiler generated
String(const String&); /| copy constructor
String(String&) noexcept; /1 move constructor
String(const char*); /1 type converting constructor, from C string

String(size_type, char);
String(std::initializer_list<char>);

~String(); /| destructor

String& operator=(const String& & /1 copy assignment operator, ref-qualifier (Ivalues only)
String& operator=(String&) & noexcept; /| move assignment operator

String& operator=(const char*) & /| type converting assignment operator

size_type length() const; /1 const member function — accessor function

bool enpty() const;

voi d clear(); /1 non-const member function — mutator function
const char* c_str() const; /' typeconversionto C string

explicit operator const char*() const;

void swap(String& noexcept; /1 swap content with other Sring

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Single class design 51
Class members

Class members can be of four kinds:

« data members

« member functions

« nested types— e.g. anested class, anested alias declaration (using), or anested typedef
* enumerators— acts as static, constant data members—enum { Up, Down, Left, Right };

A data member or member function can be
* non-static — “instance member” — each object have its own copy
« static —"classmember”

A member function can be

« non-const —allowed to modify the state of objects

« const —can not modify the state of objects
— important to declare member functionsconst if they are not to modify object state
— someconst functions may need to alter a data member — declare the data member mut abl e
— be*“const correct”, sooner or later you will otherwise get into trouble...

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 53
Class String definition, selected parts (2)

private:

static char enpty_rep_[1]; /1 static, null-terminated C string to represent empty string

size_type size_{ 0 }; 1/ NSDMI size : n
* .
char p_{ enmpty_rep_ }; p_: =
/1 Internal helper functions
voi d construct_(const char*, size_type);
voi d construct_(size_type, char);
void construct_(std::initializer_|list<char>);
voi d append_(const char*);
voi d append_(char);
I

enpty_rep_ isdefined in theimplementation file:
char String::empty_rep_[1]; /] initializedto '\ 0’

A non-empty String has its own, dynamically allocated memory — anull terminated character array (“C string”).

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)




TDDD38 APIC++ Single class design 54
Creating and operating on class objects

Class objects — variables and constants — can be either automatically och dynamically created/destroyed.

int main()

{
String s; /| variable String
const String cs{ s }; /1 constant Sring — only const member functions can be applied
cout << cs.c_str() << " has length " << cs.length() << ’'\n’; /'] the dot operator
String* ps{ new String }; /| dynamically created String object, pointed to by ps
const char* p{ ps->c_str() }; /| thearrow operator to access member in pointed-to object
String& rs{ s }; 11 referenceto Sring — alternative name for s

cout << rs << endl; /| areferenceisautomatically dereferenced when used

}
« another implicitly defined operator is the important scope resolution operator ::
class: : member /1 qualified name

« there are quite afew more implicitly defined operators

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 56
Special member functions

« default constructor —initializes a new object without any arguments

« copy constructor —initializes a new object from an existing object of the same type

« move constructor — typically used if the source is atemporary object of the same type

« copy assignment — assigns from an object of the same type

« move assignment —typically used if the right hand side is atemporary object of the same type
« destructor — cleans up when an object cease to exist, typically releasing resources

Compiler generated (implicitly declared/defined) if not declared by programmer (there are detailed rules), with the following semantics:
« default constructor

— datamembers with default initialization (class type members) are default initialized, in declaration order

— datamembers without default initialization are not initialized, e.g. fundamental type members (int, double, pointers, etc.)
 copy constructor,

— member-by-member copy construction from source to destination, in declaration order
* copy assignment

— member-by-member assignment from source to destination, in declaration order
* move constructor, move assignment

— instead of copying content, it is moved from the source to the destination
« destructor

— data members with destruction (class type members) are destroyed, in reverse declaration order

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Single class design 55
Definition of member functions
« separately, outside the class definition, e.g on an accompanying implementation file St ri ng. cc

#include "String. h"

String::size_type String::length() const
{

}

return size_;

— String:: must precede the name of any separately defined member —a qualified name
— also when from outside class scope referring to amember, such as si ze_t ype
— the parameter list and the function body is within class scope of String

« within the class definition (inclass definition)

class String

{
size_type length() const { return size_; }
I

« member functions defined inclass are automatically inline functions
« separately defined member functions can explicitly be declared inline

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 57

Constructors

oneis always invoked automatically when class objects are created
shall initialize the objects to a well-defined state
cannot be declared to return anything, not even void

.

can have parameters — these can have default arguments — can be overloaded — a class can have several constructors

String(const char*);

String(const String&);
String(String&%) noexcept;
String(std::initializer_list<char>);

default constructor — a constructor which can be used without any arguments

String(const char* s =""); /1 if noexplicit argument, " " will beused - “two-in-one”

copy constructor — a constructor with a (first) parameter of the class type — to create a new object as a copy of another

String(const String& other); 11 creates the new object as a copy of other

move constructor — a constructor with a (first) parameter of type rvalue reference — to create a new object by emptying another

String(String&& other) noexcept; /' createsthe new object by pilfering the content of other

type converting constructor — a constructor which can be invoked with one argument of another type

String(const char* s); /'l converts C string to String

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)




TDDD38 APIC++ Single class design 58

Using constructors

Selected by overload resolution.

{ String si; /| default constructor called — empty String created
String s2{ "C++" }; /1 initializiing with string literal — type conversion
String s3{ s2 }; /1 initializing with another String object — copy
String* p{ new String{"C++"} }; /1 constructor taking a C string called
vector<String> v(10); /1 10 container elements — default constructor used for each
String a[10]; /'l array element — default constructor is used for each element
) String s5{ 'C, '+, '+, "1, "1 }, /1 constructor taking initializer list

Note — the following declaration does not create a default constructed String s
String s();
but this expression does, a temporary object

return String();

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Single class design 59
Member initializers

A member initializer list can be used in constructors to initialize data members before the constructor body is executed.

Alternative implementation for String(const char* str), possible if we could be sure the parameter str in never nullptr:

String(const char* s)
size_{ strlen(s) }, p_{ strcpy(new char[size_ + 1], s) }
{}
« if both aninitilizer in the data member declaration, and amember initializer as above, only the member initializer will be executed
« amember initializer list isinserted between the constructor parameter list and the constructor body
— startswith acolon
— initidizers are separated with comma, if more than one
« the datamembers areiinitialized in declaration order, not in the order initializers are written
— si ze_ must be declared beforep_, since the value of si ze_ isused in theinitializer for p_
— awayswrite member initializers in the same order as the members are declared
« amember with default initialization will always be default initialized before the execution enters the constructor body
— useinitializer, if possible, instead of assignment in constructor body, to avoid “double” initiaization
« const and reference members cannot be assigned in the constructor body
— follows from ordinary semantic rules— such types must aways be initialized when they are created
« member initializer is the only way to invoke a base class constructor from a subclass constructors

Deri ved( parameters) : Base(arguments), ...{}

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 60
Destructor

« called automatically when an object is on its way to disappear
— for adynamically created object (new) when deleted (delete)
« typically used to release resources, e.g. deallocate memory, or closing afile

~String() { if (!enmpty()) delete[] p_; }

« cannot be declared to return anything — not even void
« have no name — special declaration syntax
« cannot have parameters — cannot be overloaded — a class can only have one destructor

explicitly called only in special cases

{
String s; /'l s created automatically — constructor invoked

String* p{ new String }; /'] Object created dynamically — constructor invoked

del ete p; /1 Dynamic object deallocated — destructor implicitly invoked
p = nullptr;

} 1/ declaration block for s isterminated — s disappears— the destructor isimplicitly invoked

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 61
The this pointer
One problem with the calling syntax for member functionsiis that the object don’t belong to the parameter list
s.at(7);
asin atraditional function call
at(s, 7);

where the object sis accessible in the function through the corresponding parameter.

what if you need to refer to the object in question in amember function — use the this pointer
— in anon-static member function this points to the object for which the function is called

— inanon-const member function thishavetype String*

— inaconst member function thishavetype const Stri ng*

— volatile can also appear, eg. const vol atile String*

— move semantics can aso be applied to *this (comes later)

thisisusually used implicitly to access members — an explicit reference is written, e.g.

size_type String::length() const

{
}

— length() isconst — thethis pointer have type const String* — the object isconst in this context — size_ cannot be modified

return this->size_;

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)




TDDD38 APIC++

Default constructor

Single class design

62

Since there are other constructors declared, a default constructor would not be generated, according to rule.

« anaive, straight-forward way to define the default constructor would be

String() {}

— the datamemberswill beinitialized according to the initializersin their declarations

by defaulting, we ask the compiler to generate

String() = default;

— adefaulted function can be more efficient than a hand-written one

File: Single-class-design-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 ARPIC++
Copy constructor

Deep copy.

Singleclass design

« the compiler generated constructor would just copy size_ and p_ — the character array would be shared by several object

« anew object isto be created — no history to take into account if something goes wrong

« the helper function construct_ takes care of the greedy details — memory allocation and copying value from other

String::String(const String& other)

{
construct _(other.p_, other.size_);
}
void String::construct_(const char* cstr,
{
if (cstr !'= nullptr & size > 0)
{
p_ = strcpy(new char[size + 1], cstr);
size_ = size;
}
}

String s2{ sl };

String s2 = si;

/1 directinitialization syntax

/1 copy initialization syntax

si ze_type size)

sl| 3

s2| 3
e[ ]

— allocating memory for the character array is the critical part —if new throws (bad_alloc), just bail out —no cleanup required
— copying sizeis safe—memory for the String object itself (size_and p_) is aready there, assigning int will not fail

File: Single-class-design-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++

Type converting constructor

Single class design 63

A constructor taking one argument of another type defines a type conversion, possibly implicit.

« declaring explicit meansthat it cannot be invoked to make implicit type conversions

class String

{
public:
String(const char*);

I

/1 not explicit

« If operator=(const char*) had not been declared for String, the assignment below would still be allowed

s = "This is a literal of type const char*";

— semanticaly equivalent to

s = String("This is a literal

of type const char*");

— theliteral of type const char* is converted to atemporary object of type String this constructor
— operator=(String& &) can then be applied to s and the temporary object

File: Single-class-design-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++
Copy assignment operator
Deep assignment.

sl = s2;

« left hand side has a history
— dispose of old content
— copy new value from right hand side
« important to do things in the right order
— no object should end up in an undefined state
— make sure to get new memory first
— then make changes

File: Single-class-design-OH-en

Singleclass design 65

st [6] F—[slelnelml 0]
s2: | 3 | —|—>|’C|'+’ T4 '\0’|

sl: | 3 | 4|—’|’C|'+’ '+"\0’|
s2: | 3 | 4|—’|’C|'+’ '+"\0’|

A4
[sTelw X mle]

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)




TDDD38 APIC++ Single class design 66
Copy assignment operator — straightforward implementation

« the default copy assignment would just assign size_ and p_ — the character array from source object would be shared

« thedestination is an existing object — old content to take care of — otherwise the same copy semantics as for the copy constructor
String& String::operator=(const String& rhs) & /'l refqualifier —assigntolvalueonly

if (this != &rhs)

{
char* p{ enpty_rep_ }; /'l incaserhsisan empty Sring
if (!rhs.enpty())
p = strcpy(new char[rhs.size_ + 1], rhs.p_); /1 if wesurvivethiswe'refine
size_ = rhs.size_;
if ('enpty()) delete[] p_;
P_ =P
}

return *this;

}
« checksif theleft and right hand side operands are the same object — self-test
s =s

« performs adeep copy in astrongly exception-safe way — allocates memory before anything is changed — if new throws
— no memory will leak
— none of the objects will be corrupted

* semantics corresponds to built-in assignment — returns a non-const reference (lvalue) to the left-hand side argument

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 68
Move semantics

One of the big newsin C++11 — alternative to classic copy semantics.
« temporary objects are created in different situations — often implicitly
« if such an object isused to initialize or assign another object it is unnecessary to make a copy
— copying can be costly —time and space
— instead move the content of the temporary to the destination object
« how find such objects —they are not visible?
— the compiler knows!
— rvalue-references catches them automatically!
— we just need to be aware of the possibility and have it in mind when we construct classes

String(const String&); /'l thiscan catch all kind of objects but
String(String&) noexcept; /1 thisoneisa better match for temporary objects (rvalues)

String& operator=(const String& &
String& operator=(String&&) & noexcept;
 implementing move semantics
— an object which resources have been moved must be destructible
— sometimes we want to apply move semantics also to ordinary objects (Ivalues)
— an object which have been moved from must be assignable (and copyable)
— the principle should be that an object moved from should be comparable to adefault initialized object

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Single class design 67

Copy assignment operator — elegant version

uses the idiom “create a temporary and swap”

need a function that can exchange the contents of two objectsin a safe way, preferably a nothrow swap

String& String::operator=(const String& rhs) &

{
String{ rhs }.swap(*this); /| create atemporary and swap
return *this;

}

.

atemporary is created and initialized by the copy construct — deep copy of rhs

the contents of this and the temporary is swapped
— thisnow becomes acopy of r hs
— thetemporary takes over of the old content of this— especially the character array

.

the temporary is destroyed after the swap
— theold dynamic memory for thisis deallocated

« if an exception isthrown, it will happen when the temporary isinitialized

strongly exception-safe —no memory will leak —no object will end up in an undefined state
— exception neutral — any exception thrown is propagated further asis

Note. If the elements had been of class type, exceptions could also be thrown when copying the elements,

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 69
Move constructor
Our implementation use the member functions swap():

String::String(String&& other) noexcept /'l size_ and p_ areinitialized by their NSDMI — empty string

{
swap( ot her); /1 swap content with ot her

String s1 = String{ "C++" }; /'l temporary object (rvalue)

String s2{ std::nove(sl) }; /1 utility function move() converts sl (Ivalue) to Sring& & (rvalue)

when entering constructor body after move

S T

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)




TDDD38 APIC++ Single class design 70
Move assignment operator
Our implementation uses clear() and swap():

String& String::operator=(String&& rhs) & noexcept

{
clear(); /1 theleft hand side operand is cleared — set to ” empty string”
swap(rhs); /1 move by swapping content with the right hand side operand
return *this;

}

sl = std::nove(s2);

start state sl cleared after move

sl: 1 0
= Hm

s2: 3 3 0

An aternativeisto just swap contents for the two objects (there is no precise definition of move semantics).

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Single class design 71
Rules for move constructor and move assignment operator generation

« The move constructor isonly generated if, the class does
— not have auser declared copy constructor
— not have auser declared copy assignment operator
— not have auser declared move assignment operator
— not have a user declared destructor

The move assignment operator is only generated if, the class does
— not have a user declared copy constructor

— not have auser declared move constructor

— not have a user declared copy assignment operator

— not have auser declared destructor

Style recommendations for declaring special member functions

« if aspecia member function is desired, and the compiler can generate it — default it

« if aspecial member function is not desired, and the compiler will generate it — delete it

« if aspecial member function is not desired, and the compiler will not generate it —don’t declare it

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 ARPIC++ Single class design 72
The name rule

Things that are declared as rvalue reference can be either an rvalue or an lvalue. The name rule says:
« ifithasanameit'san lvalue

« otherwise, it'san rvalue

voi d foo(T&& x) /'l rvalue reference having a name, x
{
T y{ x }; Il x isanlvalue, T::T(const T&) iscalled
/1 x still in scope—it would be dangerous to allow move semantics to be allowed tacitly
}
T&& fie(); /'l rvalue reference having no name
T x{ fie() }; /1 T::T(T&&) iscalled
T fum(); /'l rvalue having no name (temporary)
T y{ fum() }; /1 T::T(T&&) iscalled

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 73
Utility function std::move()
The traditional way to exchange values for two String variables:

void swap(String& x, String&y)

{
String tmp{ x }; /1 x iscopiedto t np by the copy constructor
X =y, /1y iscopiedto x by the copy assignment operator
y = tnp; /1 tnp iscopiedto y by the copy assignment operator

Both x and y shall receive new values—their old valuesis not required to be kept when they are copied — move instead
#include <utility>

void swap(String& x, String&y)

{

String tmp{ std::nove(x) }; /1 x ismovedto t np by the move constructor

x = std::nove(y); /1y ismovedto x by the move assignment operator

y = std::nove(tnp); /1 tnp ismovedto y by the move assignment operator
}

« std::move() doesn’t really do more than type convert to an rvalue reference — St ri ng&& inthiscase

« thiswill make the move versions to be chosen instead of the copy versions

Note: move() basically applies st ati c_cast <Stri ng&&>( arg)

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)




TDDD38 APIC++ Single class design 74

Ref-qualifiers for non-static member functions
Extends move semantics to *this — thee options:

« no ref-qualifier

« &ref-qualifier, same as no ref-qualifier

o &&ref-qualifier

struct X

{
void fun() & /1 OK, *this willbe X& — Ivaluereference
void fun() && /1 OK, *this will be X&& — rvaluereference
void fun() const & /1 OK, *this willbe const X& — lvaluereference to const

h

* &and && can be overloaded, in combination with the cv-qualifers

struct X

{
X* operator&() & /' selected for Ivalues only
X& operat or=(const X& & /1 selected for Ivalues only

I

X p = &X(); 1/ error: takes the address of something temporary (rvalue)

X X;

X() = x; /'l error: no known conversion for implicit this parameter from X to X&

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 76
Delegating constructors

A constructor can delegate to another constructor of the same class.

« if empty Strings had been represented in the same way as non-empty Strings, the default constructor could have been written:
String() : String{ "" } {} /| delegate to the constructor below

String(const char*);

« anaternativeisto let the type converting constructor also represent the default constructor (as we have chosen)

String(const char* = "");

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++

Single class design 75

Situations where special member functions are used

String gl{ "d obal”
String 92{ 91 };
String fun(String s)
{
String loc{ s };
loc = s;

return |oc;

}

int main()
String g3 = g1,
g2 = fun(gl);

}

/1 g1lisinitialized by the type converting constructor for C string

/1 g2 isinitialized by the copy constructor — direct initialization syntax

/'l s isinitialized by the copy constructor, unless the argument is a temporary, then move
/1 1 oc isinitialized by the copy constructor
/1 1 oc isassigned by the copy assignment operator

/| atemporary object is created and initialized by the move constructor
/1 thelocal objectss and | are destroyed by the destructor

/1 g3 isinitialized by the copy constructor — copy initialization syntax

/1 g2 isassigned fromatemporary — invokes the move assignment operator

Sometimes the temporary used for passing a return value from a function can be elided.
« insuchcasethevalueof | oc would be directly copied or moved into a destination object
« acommon optimization called RVO — Return Va ue Optimization

File: Single-class-design-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++

Single class design 7

Ways to restrict and control object creation (1)

Some objects, e.g. stream objects, are not suitable to copy.

« copy construction and copy assignment can be disallowed
« declare delete to remove a special member functions,

« default if you want the compiler to generate

public:
X() = default;

X(const X& = delete;

X& oper at or =( const

/| default initialization allowed

/1 no copy construction

= del ete; /'] no copy assignment

« if, eg., the compiler generated copy constructor is fine, but you want to restrict it for internal use only, default it as protected

protected:

X(const X& = default;

« if at least one of the destructor, copy constructor or copy assignment operator is declared, the move constructor or move assignment

operator are not generated

— the move constructor and move assignment operator should never be deleted — either declare, if desired, or ignore, if not
« eliminating public constructors does not make a class abstract (derived classes)

Note: a defaulted function must be amember function, a deleted function need not be.

File: Single-class-design-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)




TDDD38 APIC++ Single class design 78
Ways to restrict and control object creation (2)
Dynamic memory allocation can be disallowed by hiding the predefined global allocation functions.

private:

static void* operator newsize_t) = delete;
static void operator delete(void*, size_t) = delete;

/1 plainversions

static void* operator new](size_t) = delete; /] arrayversions

static void operator delete[](void*, size_t) = delete;
« these are always static members, even if not explicitly declared so
« there are also nothrow and placement versions of global new/new[] and delete/delete]]
In the context of derived classesthereis also the concept of abstract class, for which no objects can be created, except as subobjects of objects
of aderived concrete class.
For anew expression, such as’new String’, one of these new functions will be called, resulting in a two-step procedure:
* memory isacquired, and, if successful, then
« the constructor is executed to create the object in that memory

For adelete expression, such as’delete p', one of these delete functions will be called, also resulting in a two-step procedure:
« thedestructor is executed to destroy the object in the memory
« thememory isreleased

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Single class design 9

Type conversion functions

Type conversion from a class to some other type is defined as a conversion function.
« can be declared explicit to disallow implicit use

class String
{
public:
operator const char*() const { return p_; } /1 not explicit
I
/1 1fnotpresent: ostream®& oper at or <<(ostream& const String&);
String s{ "Hello World!'" };

cout << s << endl; /1 Implicit type conversion to const char*

« thistype conversion function makes it possible to use predefined oper ator << for const char*, if not declared explicit
— such conversion can cause much more problems than it solves
— beaware of possible type conversion sequences for arithmetic types
— explicit solves such problems but allows explicit use, e.g.

cout << static_cast<const char*>(s) << endl;

« an ordinary member function doing the same can be an alternative, or acomplement — c_str ()

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 80
Static members

String haveastatic datamember to represent the empty string value.
« member functions and data members declared st at i ¢ are common for all object belonging to a class— class members.

class C
{
static int s; /| static data member declaration
static int get_s(); /| static member function declaration
I
int C:s{}; /| static data member definition, explicitly initialized
int C:get_s() { returns; } /| static member function definition

« Static members can be accessed in two ways:
— class name and the scope operator (qualified name)

C :get_s()

— an object and the dot operator, or a pointer to an object and the arrow operator
object. member
pointer-to-object- >member

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Singleclass design 81
A class, its operations, namespaces, and name lookup

A nonmember function belonging to aclassis an operation of that class, no less than amember function.

« natural to declare such non-member functions in the same namespace as the class

« argument dependent lookup (ADL) is applied to unqualified function names and depend upon the arguments given in the call
— if amember function turns up, ADL does not occur
— the set of namespaces searched during ADL depends upon the types of the function parameters
— at least namespaces containing the parameter types belong to the set of searched namespaces

« there are known problems— ADL may lead to unpleasant “ surprises’

A namespace is a simple module construct.

« encapsulates the declarations within it — access controlled by using directives and using declarations
usi ng namespace std; /| opensthe entire standard namespace — all names becomes directly visible

using std::string; /1 introducesthename stri ng, asif it was declared at this point

« can be added to, successively
« have influence on name lookup

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)




TDDD38 APIC++ Single class design
String and namespace

String is encapsulated in a namespace named | DA_St ri ng.
« firstintroduced in St ri ng. h (original namespace definition)

nanespace | DA _String

{

class String { ...};
}
#endi f

« addedtoin Stri ng. cc (extension namespace definition)
#include "String. h"

nanespace | DA _String

{
}

Separate definitions for Sring member functions

« aqualified name including the namespace name can alternatively be used:

82

IDA _String::String::size_type |IDA String::String::length() const { ...}

File: Single-class-design-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Single class design
String iterators
String is a container storing elements of type char, and should as such have iterators.

for (auto it = begin(s); s != end(s); ++i)
« String iterators can be defined as character pointers and implemented as random access iterators
char*;

const char*;
std::reverse_iterator<iterator>;

using iterator

using const_iterator

using reverse_iterator

usi ng const_reverse_iterator

— iterator operators are given by the ordinary pointer operators: *, - >, ++, --, etc.

— std::reverse iterator is a standard template utility class to define reverse iterators, given the forward iteratorsi t er at or and

const _iterator
— usudlyiterator andconst _iterator must bedefined as classes
« thefull set of iterator member functions are defined, some examples

iterator begin() { return iterator(p_); }
const_iterator begin() const { return const_iterator(p_); }
iterator end() { return iterator(p_ + size_); }

const _iterator end() const { return const_iterator(p_ + size_); }

Iterators will be covered in the standard library lectures.

std::reverse_iterator<const_iterator>;

83

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Single class design
Some recommendations for single class design (1)

« aclass should do one thing, and do it well
« members not to be accessed directly should be private (or protected)
« member functions that does not modifying the state of the objects shall be const
« can the constructorsinitialize the object in al desired ways?
« declare and initialize data members in the same order.
— the declaration order determines the initialization order, so be consistent with that
« prefer initialization to assignment in constructors
— often more readable
— avoids“doubleinitialization” of default initialized members

« does the compiler generated copy constructor, copy assignment operator, and destructor work, or must they be defined?

« copy and destroy consistently

— if you write/disable the copy constructor or the copy assignment operator, you probably need to do the same for the other

— if you write copy functions, you probably need to write a destructor, and vice-versa
« explicitly enable or disable copying (copy constructor and copy assignment)

— if desired and compiler versions works fine — default both

— if not desired — delete both

— if desired but the compiler generated versions does not work correctly — write both

— deleting afunction declaresit private— don’t delete move constructor or move assignment operator if their copy versions are allowed

File: Single-class-design-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Single class design
Some recommendations for single class design (2)

« make data members private, except in behaviourless aggregates (C-style structs)
— std:: pair isdefined asastruct with only public members
« don't give away your internals
— let e.g. member access functions return reference to const or pointer to const
« avoid providing implicit conversions
— eliminates or minimizes creation of temporary objects by type converting constructors and function
— prefer to declare converting constructors and conversion functions explicit
— define optimized operator overloadings for the mixed type operation to be allowed
« whenever it makes sense, provide a no-fail swap
— nice things can be done using swaps
« design and write error-safe code
« don't optimize prematurely — don’t inline by default, it leads to higher coupling
— profilers are good at telling you which functions you should mark inline
— profilers are bad at telling you which functions you should not have marked inline
— inline may not even matter for your compiler...

85

File: Single-class-design-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)




