
File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 86

Operator overloading

The following operator symbols can be defined by user:

+ - * / % ^ & | ~ ! << >>

= += -= *= /= %= ^= &= |= <<= >>=

< > <= >= == != && ||

++ -- -> ->* , [] ()

new new[] delete delete[]

The following can not be user defined:

:: . .* ?:

The following must be defined as non-static member functions:

= [] () ->

This will guarantee that the left hand side operand will be an lvalue of the type in question.

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 87

Operator == for String

As member:

class String
{
public:

…
bool operator==(const String& rhs);
…

};

As non-member (possibly as friend, if necessary):

class String
{
public:

…
};

bool operator==(const String& lhs, const String& rhs);

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 88

Member or not?

s1 == s2

A binary member operator function have the left argument bound to this.

• written as an ordinary member function:

s1.operator==(s2)

• the left hand side operand must be a String object – this point to s1

A binary non-member function has both arguments as explicit parameters/arguments.

• written as an ordinary function call:

operator==(s1, s2)

• a non-explicit type converting constructor allows the left operand to be const char[] (const char*):

"C++11" == s2

– a temporary object is in such case created, as explicitly done below:

String{ "C++11" } == s2

– if the constructor is explicit you must do it this way – explicit type conversion

Guidelines for deciding on, if an operator function should be a member or not will follow!

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 89

Friend or not?

A non-member operator function can be a friend.

class String
{

public:
…
friend bool operator==(const String& lhs, const String& rhs);
…

};

bool operator==(const String& lhs, const String& rhs);

Avoid, if possible (if there are public member functions that can be used to implement).

bool operator==(const String& lhs, const String& rhs)
{

return strcmp(lhs.c_str(), rhs.c_str()) == 0;
}

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 90

Optimized versions – to avoid implicit type conversion and temporaries

There can be optimized versions for equality test with char*.

bool operator==(const String& lhs, const String& rhs);

bool operator==(const String& lhs, const char* rhs);

bool operator==(const char* lhs, const String& rhs);

This allows the following equality tests, without any temporary objects being created:

String s1{ "foo" };
String s2{ "fie" };

char c3[]{ "fum" };

s1 == s2

s1 == c3

c3 == s1

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 91

More examples of operator overloading for class String

class String
{
public:

…
String& operator=(const char*) &; // type converting assignment
String& operator=(std::initializer_list<char>) &;

char& operator[](size_type);
char operator[](size_type) const;

String& operator+=(const String&);
…

};

String operator+(const String&, const String&);

ostream& operator<<(ostream&, const String&);

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 92

Overloading operator[]

To be able to operate on both variable and constant objects, the indexing operator must be overloaded in two versions, non-const and const.

class String
{
public:

…
char& operator[](size_type); // for String

char operator[](size_type) const; // for constant String
…

};

String s{ "foobar" };
const String cs{ s };

s[i] = s[i + 1]; // non-const-version used in both places

s[i] = cs[i]; // const-version used for cs

Implementation does not differ, only the return type and const.

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 93

Overloading operator<<

Printing a String:

String s{ "foobar" };

cout << s << endl;

• operator<< can not be a member if we want to use infix notation, which we of course do.

– left operand is an ostream, so it cannot be a member.

• built-in operator<< for const char* is used to implement.

• public member function c_str() is available, so friend can be avoided.

ostream& operator<<(ostream& os, const String& str)
{

return os << str.c_str();
}

This signature for operator<< can be regarded as an idiom for overloading operator<< for an out stream an a user defined type T:

ostream& operator<<(ostream& os, const T& t);

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 94

Guidelines for making an operator function member or non-member

• If the operator is one of the foolowing, it cannot be overloaded

. .* : ::

• If the operator is one of, it must be member

= -> [] ()

• If the operator

1. can have another type as left-hand side argument, or

2. can have type conversion for its left-hand side argument, or

3. can be implemented only by using the class’ public interface,

make it a non-member, and, if needed in case 1 and 2, also make it friend.

• If it needs to behave virtually, add a virtual member function and implement it in terms of that member function (of interest for
polymorphic classes)

• Otherwise, let the operator be a member.

– but the following operators are natural to declare as members, since an object of the type in question should be left argument

*= /= %= += -= &= |= ^= <<= >>= ++ --

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Operator overloading 95

Some recommendations concerning operator overloading

• preserve natural semantics for operator functions

– follow the same semantics as their built-in equivalents, whenever not contradicted

• take parameters appropriately by value, reference, or const reference

• choose return type with extra care, if returning a class type

– lvalue or rvalue semantics?

– return object or reference? const or non-const?

• avoid overloading &&, || and, (comma operator)

– built-in versions of these enjoys special treatment by the compiler

– user defined overloadings will be ordinary functions with very different semantics

• arithmetic and assignment operators comes in pair

– if you overload +, you should also overload +=

– they should be defined so that a+=b and a=a+b have the same meaning

– a way to achieve this is to define + in terms of +=

• increment and decrement operators (++ and --)

– both prefix form and postfix form (latter have an int dummy parameter) should be defined

– define the postfix form in terms of the prefix form

– prefer using the prefix form, if possible

• consider overloading to avoid implicit type conversions

• don’t write code that depends on the evaluation order of arguments

