TDDD38 APIC++ Operator overloading 86
Operator overloading

The following operator symbols can be defined by user:

+ - * / % A & | ~ ! << >>
= += -= *= /= Y% N= &= = <<= >>=

< > <= >= == 1= && ||

R (1O

new newW] del ete delete[]

The following can not be user defined:
L* ?:
The following must be defined as non-static member functions:
= [1] () ->

Thiswill guarantee that the left hand side operand will be an Ivalue of the type in question.

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 88
Member or not?
sl == s2

A binary member operator function have the left argument bound to this.
« written as an ordinary member function:

s1. operator==(s2)
« theleft hand side operand must bea St ri ng object — thispointto s1

A binary non-member function has both arguments as explicit parameters/arguments.
« written asan ordinary function call:

operator==(sl, s2)
« anon-explicit type converting constructor allows the left operand to be const char([] (const char*):
"C++11" == s2
— atemporary object isin such case created, as explicitly done below:
String{ "C++11" } == s2
— if the constructor is explicit you must do it this way — explicit type conversion

Guidelines for deciding on, if an operator function should be a member or not will follow!

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 87
Operator == for String
As member:
class String
{
public:
b.t.)ol oper at or ==(const String& rhs);
H
As non-member (possibly asfriend, if necessary):
class String
public:
b

bool operator==(const String& | hs, const String& rhs);

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 89
Friend or not?
A non-member operator function can beaf ri end.

class String

{

public:
fr| end bool operator==(const String& |l hs, const String& rhs);
h
bool operator==(const String& | hs, const String& rhs);

Avoid, if possible (if there are public member functions that can be used to implement).

bool operator==(const String& | hs, const String& rhs)

{
}

return strcenp(lhs.c_str(), rhs.c_str()) == 0;

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 20

Optimized versions — to avoid implicit type conversion and temporaries
There can be optimized versions for equality test with char *.

bool operator==(const String& |hs, const String& rhs);

bool operator==(const String& | hs, const char* rhs);

bool operator==(const char* |hs, const String& rhs);
This allows the following equality tests, without any temporary objects being created:

String s1{ "foo" };
String s2{ "fie" };

char c3[]{ "funt };

sl == s2
sl == c3
c3 == sl

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 92
Overloading oper at or []
To be able to operate on both variable and constant objects, the indexing operator must be overloaded in two versions, non-const and const.

class String

{
public:
(l:lﬁar& operator[](size_type); /1 for String
char operator[](size_type) const; /| for constant St ri ng
h
String s{ "foobar" };
const String cs{ s };
s[i] = s[i + 1]; /'l non-const-version used in both places
s[i] = cs[i]; /| const-version used for cs

Implementation does not differ, only the return type and const.

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 91
More examples of operator overloading for class String

class String

{

public:

String& operator=(const char*) &
String& operator=(std::initializer_list<char>) &

/| type converting assignment
char & operator[](size_type);
char operator[](size_type) const;
String& operator+=(const String&);

H

String operator+(const String& const String&);

ostream& oper at or <<(ostream& const String&);

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 93
Overloading operator<<

Printing a String:

String s{ "foobar" };

cout << s << endl;

« operator<< can not be amember if we want to use infix notation, which we of course do.
— left operand is an ostream, so it cannot be amember.

« built-in operator << for const char* is used to implement.

« public member function c_str() is available, so friend can be avoided.

ostream& oper at or <<(ostrean& os, const String& str)

{
}

return os << str.c_str();

This signature for oper ator << can be regarded as an idiom for overloading oper ator << for an out stream an a user defined type T:

ostream& oper at or <<(ostream& os, const T& t);

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linképings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 94

Guidelines for making an operator function member or non-member

« |f the operator is one of the foolowing, it cannot be overloaded

*

If the operator is one of, it must be member

= -> [1 0

I the operator

1. can have another type as |eft-hand side argument, or

2. can havetype conversion for its left-hand side argument, or

3. can beimplemented only by using the class’ public interface,

make it anon-member, and, if needed in case 1 and 2, also makeit friend.

If it needs to behave virtually, add a virtual member function and implement it in terms of that member function (of interest for
polymorphic classes)

Otherwise, let the operator be a member.

— but the following operators are natural to declare as members, since an object of the type in question should be |eft argument

*= /= %= += -= &= | = Az <<= >>= ++ -

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Operator overloading 95
Some recommendations concerning operator overloading

« preserve natura semantics for operator functions
— follow the same semantics as their built-in equivalents, whenever not contradicted
« take parameters appropriately by value, reference, or const reference
« choose return type with extra care, if returning a class type
— Ivalue or rvalue semantics?
— return object or reference? const or non-const?
« avoid overloading &&, | | and, (comma operator)
— built-in versions of these enjoys special treatment by the compiler
— user defined overloadings will be ordinary functions with very different semantics
« arithmetic and assignment operators comesin pair
— if you overload +, you should also overload +=
— they should be defined so that a+=b and a=a+b have the same meaning
— away to achieve thisisto define + in terms of +=
« increment and decrement operators (++ and --)
— both prefix form and postfix form (latter have ani nt dummy parameter) should be defined
— define the postfix form in terms of the prefix form
— prefer using the prefix form, if possible
« consider overloading to avoid implicit type conversions
« don't write code that depends on the evaluation order of arguments

File: Operator-overloading-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

