
File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 134

Exception handling

• provides a way to transfer control and information from a point in the execution to an exception handler

• a handler can be invoked by a throw expression in the handler’s try block, or thrown in a function called from the try block

• try block – function try block – exception specification – throw expression – handler – exception declaration

… void fun() C::C() // ctor
try try try : member(…)
{ { {

fun(); if (disaster) throw E{}; …
} } }
catch (const E& e) { catch (const E& e) { catch (const E& e) {

… … …
} throw; // rethrows e // e re-thrown implicitly!
… } }

• a throw expression has type void

– initializes a temporary object – the exception object

– in a handler, a simple throw expression rethrows the caught exception object

– in a function try block of a constructor or a destructor the caught exception object is always implicitly rethrown

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 135

Handling an exception

• handlers of a try block are tried in order of appearance

– makes it possible to write handlers that can never be executed:

try {
…

}
catch (const exception& e) { // catches also subtype logic_error

…
}
catch (const logic_error& e) {

… // dead code
}

• if no match is found among the handlers of at try block, the search continues in a dynamically surrounding try block

– if no handler is found, the program calls terminate() which in turn calls abort()

• ... (ellipsis) in a handler’s exception declaration specifies a match for any exception

– must be the last handler for a try block, if used

catch (...) { // “catch-all handler”
…

}

• an exception is considered handled upon entry to a handler

– the stack will be unwound at that point

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 136

Exception specifications

Two forms, one new and one deprecated.

• noexcept specification

void fun() noexcept(false);

void fun() noexcept(true);

void fun() noexcept; // equivalent to noexcept(true)

– the expression supplied to noexcept shall be a constant expression convertible to bool

– if a noexcept(true) specification is violated the program will call std::terminate()

• dynamic exception specification – deprecated in C++11 – don’t use

– dynamic exception specifications are handled dynamically – no static checks – code size may increase

void fun() throw (range_error, length_error);

void fun() throw (); // does not throw…

– if violated the program will call std::terminate()

void fun() throw (range_error, length_error, bad_exception);

– any exception not in the exception specification will be replaced with std::bad_exception

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 137

Special functions used by the exception handling mechanism

[[noreturn]] void terminate() noexcept;

• called when exception handling must be abandoned for other error handling techniques; calls a terminate handler function

• the default terminate handler function can be replaced by calling set_terminate(my_terminate_handler)

• the attribute [[noreturn]] specifies that a function does not return

[[noreturn]] void abort() noexcept;

• is not directly associated with exception handling but called by the default terminate handler function.

• terminates the program without executing destructors for object of automatic, thread or static storage duration

There is more…



File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 138

Standard exceptions

exception e.g thrown by/when:

logic_error

domain_error illegal functions values

invalid_argument bitset constructor

length_error object length is exceeded

out_of_range at()

future_error functions in the thread library

runtime_error

range_error certain computations

overflow_error bitset::to_long()

underflow_error certain computations

system_error system related functions

ios_base::failure ios_base::clear()

bad_typeid typeid

bad_cast dynamic_cast

bad_weak_pointer std::shared_ptr constructors

bad_exception exception specification

bad_function_call std::function::operator()

bad_alloc new

bad_array_new_length new[]

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 139

Class exception

Base class for all standard exceptions.

class exception
{
public:

exception() noexcept;

exception(const exception&) noexcept;

virtual ~exception() noexcept;

exception& operator=(const exception&) noexcept;

virtual const char* what() const noexcept;
};

• what() returns an implementation-dependent message

– subclasses carry their own messages, supplied when thrown

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 140

Class logic_error

Example of a typical direct subclass to exception.

class logic_error : public exception
{
public:

explicit logic_error(const string& what_arg) noexcept
: msg_{ what_arg } {}

explicit logic_error(const char* what_arg) noexcept
: msg_{ what_arg } {}

virtual const char* what() const noexcept { return str_.data(); }

private:
string msg_;

};

• copy constructor and copy assignment operator are compiler generated

• logic_error, runtime_error, and their subclasses are suitable to derive your own exception classes from

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 141

Class length_error

Example of a typical second level subclass to exception – a “concrete” exception class.

class length_error : public logic_error
{
public:

explicit length_error(const string& what_arg) noexcept
: logic_error{ what_arg } {}

explicit length_error(const char* what_arg) noexcept
: logic_error{ what_arg } {}

};

• all functionality is inherited from logic_error, only two constructors need to be defined

• the standard exception hierarchy can easily be extended with user defined exceptions like length_error and alike



File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 142

Streams and exceptions

When an I/O failure occur, a stream by default silently “freezes”.

• the stream position locks on the faulty position

• the operation fails – returns false if it’s a bool returning operation

– all following reads will also fail

• the occurrence of the failure may not be obvious

As an alternative, a stream can be set to throw an exception, e.g.

cin.exceptions(ios::eofbit);

clog.exceptions(ios::badbit | ios::failbit);

The exception thrown will be ios::failure, a subtype to exception::runtime_error::system_error

try
{

cin >> x;
}
catch (const ios::failure& e)
{

cout << e.what() << ’\n’; // will tell about the cause to the read failure
}

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 143

Runtime assertions

#include <cassert>

void print(int* p)
{

assert(p != nullptr);
cout << *p;

}

• if the expression is false, a message is printed and abort() is called

• the message shall include

– the expression whose assertion failed,

– the name of the source file, and

– the line number where it happened, usually

Assertion failed: expression, file filename, line line number

• assert is designed to capture programming errors, not user or running errors

– generally disabled after a program exits its debugging phase

• assertion checks are disabled if the macro NDEBUG is defined when <cassert> is included

#define NDEBUG 1
#include <cassert>

g++ -DNDEBUG

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 144

Static assertions

static_assert(sizeof(long) >= 8, "64-bit code generation required");

• a constant expression that can be contextually converted to bool, and a string literal

– if the expression is true the declaration has no effect

– if the expression is false the resulting diagnostic message shall include the string literal

• type traits for inquiring about type properties and type relations is a new interesting possibility in C++11

static_assert(std::numeric_limits<T>::is_integer, "T must be an integer!");

– T is supposed to be a template type parameter

static_assert(std::is_same<std::result_of(fun())>::type, short, "Error!");

File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 145

Recommendations for error handling and exceptions (1)

• design and write error-safe code

– give the strongest safety guarantee which is reasonable in each case

– The Basic Guarantee: ensure that errors always leave your program in a valid state

– The Strong Guarantee: prefer to additionally guarantee that the final state is either the original state or the
intended target state

– The No-Fail Guarantee: prefer to additionally guarantee that the operation can never fail

• prefer to use exceptions over error codes to report errors

– exceptions can’t be silently ignored

– exceptions propagate automatically

– exception handling removes error handling and recovery from the main line of control

– exception handling is better than the alternatives to report errors from constructors and destructors

• use assertions to document assumptions internal to a module

– don’t use runtime assertions to report run-time errors



File: Exception-Handling-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-04-16)

TDDD38 APiC++ Exception Handling 146

Recommendations for error handling and exceptions (2)

• be careful with exception specifications

– when violated they terminate your program

– can causes the compiler to inject additional run-time overhead in the form of implicit try/catch blocks to enforce via run-time checking
that a function only emit listed exceptions

– in general one can not write useful exception specifications for template functions

– writing exception specifications for virtual functions forces overridings to have compatible specifications

• throw by value – catch by reference

– don’t throw by pointer (copying Java syntax)

– catch by reference (usually to const) to avoid copying and destruction

– catch by reference to preserve polymorphism

– when rethrowing an exception E, prefer throw instead of throw E

• exceptions are well suited for communicating errors between independently developed program parts

– e.g. library components should report errors by throwing exceptions

– use other error handling techniques when appropriate, e.g. for dealing with local errors


