
File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 96

Derived classes

C++ has a relatively complete and complicated derivation mechanism.

• supports several inheritance models

– single inheritance – only one direct base class

– multiple inheritance – two or more direct base classes

– repeated inheritance – an indirect base class is inherited several times through multiple inheritance

– multiple and repeated inheritance can lead to ambiguities and other problems – need for ways to solve such – virtual inheritance

– static members, nested types and enumerators are class members – can always be found unambiguously

• several ways to specify access to base class members in a derived class

– public – public members of the base class are accessible as public in the derived class, protected members as protected

– protected – public members of the base class are accessible as protected in the derived class, protected members as protected

– private – public and protected members of the base class are accessible as private in the derived class

– default access is public if a base class is a struct, private if it is a class

• in case of repeated inheritance the number of subobjects of a repeatedly inherited base class can (must) be controlled

– virtual base class – in combination with one of the three above, e.g. virtual public

• polymorphic behaviour is controlled by the programmer

– only virtual functions can be bound dynamically and have polymorphic behaviour

– objects must be referred to by pointers or references, if virtual function calls are to be bound dynamically

– the overhead of polymorphism can be avoided if not desired – don’t declare any virtual functions unless required

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 97

Person-Employee-Manager-Consultant – a polymorphic class hierarchy

Design of a simple polymorphic class hierarchy for different categories of employees

• class representing persons in general – Person

– have name and civic registration number

– all employees shall share the properties of this class

– no Persons are to be created – shall be an abstract class

• class for employees in general – Employee

– have employment date, employment number and salary, works at a department

– Employees are to be created – shall be a concrete class

• class for employees that also are department managers – Manager

– manages a department and its employees

• class for (temporary) employees that are consultants – Consultant

– no actual difference to employees in general but need to be distinguishable

• objects are supposed to be referred to by pointers and created dynamically

– otherwise no polymorphic behaviour, and the way objects are copied require dynamic allocation

– other polymorphic type objects may be declared statically and polymorhism obtained to by reference passing

Person

Employee

Manager Consultant

(abstract)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 98

Class Person

class Person
{
public:

virtual ~Person() = default;

virtual Person* clone() const = 0;

virtual std::string str() const;

std::string get_name() const;
void set_name(const std::string&);

CRN get_crn() const;
void set_crn(const CRN&);

protected:
Person(const std::string& name, const CRN& crn);
Person(const Person&) = default;

private:
Person& operator=(const Person&) = delete;

std::string name_;
CRN crn_;

};

Person
(abstract)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 99

Comments on Person

• basically a trivial class

– well-behaved data members regarding initialization, copying/moving, and destruction

– generated copy constructor and move constructor are fine, but allowed only for internal use – protected and default

– no obvious use of move constructor, but since the copy constructor is allowed…

• defaulted and deleted member functions

– the default constructor is not generated when another constructor is declared – could be defaulted if required

– copy assignment shall not be allowed – deleted – access specification does not matter, it will be private regardless

– move assignment is not generated because of other declared special member functions (more about this later)

– only special member functions can be defaulted – any function can be deleted

• virtual functions – virtual

– virtual functions can be overridden by subclasses

– happens if a function with the same signature is declared in a subclass – virtual is then optional

– a function in a subclass with the same name but with different signature will instead hide

– makes the class polymorphic

• pure virtual function

– a pure specifier = 0 makes a virtual function publicly non-callable

– can have a separate definition – must, if a destructor – callable by other member functions, and from subclass member functions

– pure virtual functions are inherited – a subclass becomes abstract unless all inherited pure virtual functions are overridden

– makes the class abstract

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 100

Comments on Person, cont.

• polymorphic class

– have virtual functions, own or inherited

– must have a virtual destructor to ensure correct destruction of subobjects

– objects will contain type information – used when calling virtual functions and by dynamic_cast

– objects will contain a virtual table (e.g. __vtable) – implementation technique for calling virtual functions (generated by compiler)

• abstract class

– no free-standing objects can be created

• protected constructors

– since Person is abstract there is no need for any public constructor

– protected constructors can be used to emphasizes abstractness

• static type and dynamic type

Person* p{ new Employee{ … } }; // p has static type “pointer to Person”

p->clone(); // the dynamic type of the expression *p is Employee

– the static type is used during compilation to check if clone() is valid for the kind og object that p kan point to

– the dynamic type is used during execution to bind the overriding of clone() corresponding to the object p actually points to

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 101

Constructor taking name and civic registration number

Person::Person(const std::string& name, const CRN& crn)
: name_{ name }, crn_{ crn }

{}

Ensures that a new Person always have a name an a civic registration number.

• default constructor is eliminated

• no other constructor is available that can initialize an object in some other way, except the copy and move constructor

• only to be used by corresponding direct subclass constructors – declared protected

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 102

Member function str()

virtual string Person::str() const;

Definition:

string Person::str() const
{

return name_ + ’ ’ + crn_.str();
}

A call will be bound dynamically, if the object in question is referred to by a pointer or a reference

• the dynamic type decides which overriding to be called

Person* p = new Manager{ name, crn, date, employment_number, salary, dept };

cout << p->str() << endl;

– pointer p has static type Person*

– expression *p has dynamic type Manager

(*p).str()

– Manager::str() is called – we prefer the arrow operator in this case

p->str()

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 103

Member function clone()

virtual Person* clone() const = 0;

A polymorphic class needs a polymorphic copy function.

• the copy constructor could be used, but it would be very cumbersome

• polymorphic class objects are often allocated dynamically and handled with polymorphic pointers

Person* p = new Manager{ name, crn, date, employment_number, salary, dept };

Person* copy = p->clone();

• every concrete subclass must have its own, specific, overriding of clone()

– it’s the programmer’s responsibility to ensure this

– it’s possible to code so the compiler can check this

• suitable candidate for making Person abstract

– we have decided to not allow Person objects a such

– made pure virtual by the pure specifier (= 0)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 104

Subclass Employee

class Employee : public Person
{
public:

Employee(const std::string& name,
const CRN& crn,
const Date& e_date,
const int e_number,
const double salary,
const int dept = 0);

~Employee() = default;

Employee* clone() const override; // note return type!

std::string str() const override;

int get_department() const;
Date get_employment_date() const;

int get_employment_number() const;
double get_salary() const;

protected:
Employee(const Employee&) = default;

Person

Employee

(abstract)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 105

private:
Employee& operator=(const Employee&) = delete;

friend class Manager;
void set_department(const int dept);
void set_salary(const double salary);

Date e_date_;
int e_number_;
double salary_;
int dept_;

};

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 106

Comments on Employee

• trivial class

– same considerations as for Person

• an Employee object consists of a subobject of type Person and the specific Employee data members

– the Person subobject is by definition initialized before the other members of Employee

– the Person subobject is by definition destroyed after the other members of Employee

– the only way to pass arguments to a base class constructor is by a member initializer

• both virtual functions are overridden

– Employee is to be a concrete class

– require a specific version of str()

– clone() must be overridden for every concrete class

– marking a virtual function with override makes the compiler check there is such a virtual function to be overridden

Employee* clone() const override;

– recommended style is to not declare virtual when using override

• Manager is declared friend

– all member functions of Manager is given unrestricted access to all Employee members, including private members

– friendship creates stronger coupling than derivation – derivation does not give access to private members

– why Employee declares Manager a friend we leave to later …

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 107

Employee’s public constructor

Employee::Employee(const string& name,
const CRN& crn,
const Date& e_date,
const int e_nbr,
const double salary,
const int dept)

: Person{name, crn}, e_date_{e_date}, e_number_{e_nbr}, salary_{salary}, dept_{dept}
{}

• Person subobject is by definition initialized first

– write the Person initializer first in the member initializer list

– avoids unnecessary warnings

• Employee data members are then initialized in declaration order

– write the member initializers in that order

– avoids unnecessary warnings

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 108

Member function str() overridden

string Employee::str() const override
{

return Person::str() + " (Employee) " + e_date_.str() + ' ' + std::to_string(dept_);
}

• calls str() for the Person subobject to produce part of the string to return

• std::to_string() is overloaded for all fundamental types

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 109

Member function clone() overridden

Employee* clone() const override
{

return new Employee{ *this };
}

• shall create a dynamically allocated copy of the object for which clone() is called, and return a pointer to that object

• the copy constructor is the natural choice to make a copy

• since the return type belongs to a polymorphic class hierarchy we are allowed to adapt it

Employee* p1= new Employee{ name, crn, date, employment_nbr, salary };

Employee* p2 = p1->clone(); // no cast needed if clone() returns Employee*

Person* p3 = p1->clone(); // implicit upcast – Employee* to Person*

• the types are said to be covariant

– adapting the return type for clone() is allowed because of their close relation to each other

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 110

Subclass Manager

class Manager : public Employee
{
public:

Manager(const std::string& name,
const CRN& crn,
const Date& e_date,
const int e_number,
const double salary,
const int dept);

~Manager() = default;

Manager* clone() const override;

std::string str() const override;

void add_department_member(Employee* ep) const;
void remove_department_member(const int e_number) const;
void print_department_list(std::ostream&) const;

void raise_salary(const double percent) const;

protected:
Manager(const Manager&) = default;

Person

Employee

Manager

(abstract)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 111

private:
Manager& operator=(const Manager&) = delete;
// Manager& operator=(Manager&&); is not generated

// Manager does not own the group members objects, no clean-up required
// Employment number is key
mutable std::map<int, Employee*> dept_members_;

};

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 112

Comments on Manager

• trivial class

– well-behaved std::map member dept_members_ – default initialized to an empty map

– otherwise same considerations and measures taken as for Employee and Person

• a Manager object consists of a subobject of type Employee, which in turn consists of a subobject of type Person, and a std::map object

– base members are initialized top-down – Person subobject first, then Employee subobject, thereafter dept_members_

– destruction is performed in the opposite order – dept_members_ – Employee members – Person members

• dept_members_ is declared mutable

– add_department_member() och remove_department_member() modifies the object

– we prefer to regard them as non-modifying operations from a public point of view – const

– mutable allow dept_members_ to be modified by const member functions

• Manager was declared friend by Employee

– Manager does not access any private members of Employee – so why?

– we will soon find out…

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 113

Manager’s public constructor

Manager(const std::string& name,
const CRN& crn,
const Date& e_date,
const int e_number,
const double salary,
const int dept)

: Employee{ name, crn, e_date, e_number, salary, dept }
{}

• all parameters are passed as arguments to direct base class Employee’s constructor

• dept_members_ have default construction – an empty employee list is created for a new Manager

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 114

Member function clone() overridden

Manager* clone() const override
{

return new Manager{ *this };
}

Suppose we forget to override clone() in Manager.

• the final overrider is then Employee::clone()

• instead of a Manager clone() would return an Employee

– copied from the Employee subobject of the Manager which was to be copied

– Employee copy constructor creates the copy – member by member copy of the Employee data members

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 115

Adding and removing department employees is done by Manager

void Manager::add_department_member(Employee* ep) const
{

// Set employee's department to same as manager's department
ep->set_department(get_department()); // require friendship

// Add employee to department members
dept_members_.insert(make_pair(ep->get_employment_number(), ep));

}

• Manager must be friend of Employee, to be allowed to call Employee::set_department() in this context

– function parameter ep is a pointer to an Employee

– only public operations are then allowed (unless Manager is a friend of Employee)

• it makes no difference if set_department() had been protected, Manager must still be friend

– protected access is only allowed when the accessed object is a subobject of the accessing object

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 116

Consultant

class Consultant final : public Employee // no subclassing
{
public:

using Employee::Employee; // inheriting constructors

~Consultant() = default;

Consultant* clone() const override;

std::string str() const override;

protected:
Consultant(const Consultant&) = default;

private:
Consultant& operator=(const Consultant&) = delete;

};

Person

Employee

Consultant

(abstract)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 117

Comments on Consultant

• no real difference compared to Employee

– same data members, same set of operations

• we want to be able distinguish consultants from ordinary employees

– subtyping is a way to allow for that by dynamic type checks

• marking a class final

class Consultant final : public Employee

– not allowed to derive from Consultant

• marking a virtual function final

string str() const override final;

– such a function is not allowed to override in subclasses

• inheriting constructors

using Employee::Employee;

– naming a constructor in a nested using declaration opens for inheriting constructors from a base class

– the public constructor for Manager and Consultant is inheried from Employee

– our special member functions must still be declared

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 118

The using declaration in class scope

• a using-declaration introduces a name in the declarative region in which it appears

using name; // an alias for the name of some entity declared elsewhere

• can be used in class scope to introduce names from a base class

using Base::hidden;

– inheriting constructors

using Base::Base;

• the alias created has the usual accessibility for a member declaration

– an alias can be a public alias for a protected member

– a using-declaration can not make a private member of a base class (more) accessible

• member functions in the derived class override and/or hide member functions with the same name and
parameter types in the base class

• can not be used to resolve inherited member ambiguities

Note: A using-directive can not appear in class scope, so the following is not allowed in class scope:

using namespace std;

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 119

Using the using declaration in class scope

class A
{

public:
void f();
void h(); // h can be named in a using declaration, since no private h

protected:
void h(int);
void g(); // g can be named in a using declaration, since no private g
void g(int);
void p();

private:
void f(int); // using A::f not possible (access control)
void p(int); // using A::p not possible (access control)

};

class B : public A
{

public:
using A::h; // OK
using A::g; // OK
using A::p; // error: void A::p(int) is private within this context

private:
using A::f; // error: void A::f(int) is private within this context

};

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 120

Inheritance and special member functions

• The default constructor and the copy/move constructors are not inherited,

– implicitly-declared in a derived class, if not user declared

• The destructor is not inherited,

– implicitly-declared, if not user declared

• Operator functions are inherited, but

– inherited copy/move assignment operators are always hidden, either by implicitly-declared or user declared copy/move assignment
operators of the derived class

• A using-declaration that brings in a copy/move constructor or a copy/move assignment operator from the base class is not concidered an
explicit declaration and does not supress the implicit declaration of these functions in the derived class. Such special member functions
introduced by a using-declaration is therefore hidden by the implicit declaration.

• A using-declaration cannot refer to a destructor for a base class.

• Other constructors brought in from a base class by a using-declaration are inherited.

For Consultant this gives that

• the default constructor is not inherited (never is), and is not implicitly-declared since other constructors are declared

• the copy/move constructors are not inherited (never is) – are user declared (defaulted)

• the destructor is not inherited (never is) – is user declared (defaulted)

• the copy assignment operator is inherited but hidden, as always, in this case by a user-declared (deleted) copy assignment operator

• the move assignment operator is not implicitly-declared since, e.g., the copy assignment operator is explicitly declared

• the user-declared public contructor of Employee is inherited, because of the using-declaration using Employee::Employee;

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 121

The NVI pattern – Non-Virtual Interface

class Person
{
public:

…
std::string str() const;
Person* clone() const;
…

private:
…
virtual std::string to_str() const;
virtual Person* make_clone() const = 0;

};

– public str() and clone() are declared non-virtual

– implemented by call-through to a corresponding private virtual function to_str() and make_clone(), respectively

– subclasses override to_str() and make_clone()

The Non-Virtual Interface pattern eliminates the problem that a public virtual function really do two things:

• specifies interface

• specifies implementation – namely internal customizable behaviour

NVI keeps public interface apart from implementation – makes it easier to modify implementation without affecting clients.

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 122

NVI str() and to_str()

• the non-virtual public member str() is inherited by subclasses

std::string Person::str() const
{

return to_str(); // explicitly this->to_str()
}

– a call to str() will be bound statically

– a call to to_str() will be bound dynamically

– the type of the this pointer reflects the type of the object that have called the function

• definition of to_str() for Person

string Person::to_str() const
{

return name_ + ' ' + crn_.str();
}

– to be overridden by subclasses, might be used by subclass implementation

Note: It is allowed to override a virtual function, even if it is declared private in the base class.

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 123

NVI clone() and make_clone()

Person* Person::clone() const
{

Person* p = make_clone(); // explicitly: this->make_clone()

// assert will fail if the copy *p doesn’t have same type as the original, *this
assert(typeid(*p) == typeid(*this) && "make_clone() incorrectly overridden");

return p;
}

• the non-virtual public member clone() is inherited by subclasses

– the string literal "make_clone() incorrectly overridden" is converted to true in this context

– assert will not fail if the copied object (*p) and the original (*this) have same type – true && true is true

– the purpose of the right hand side of && is that this text is to appear in the error message when the actual assertion fails

• make_clone() for Person is pure virtual

virtual Person* make_clone() const = 0;

– every concrete subclass must override make_clone()

– the assert will check this, but unfortunately not until runtime

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 124

Initialization and destruction of objects of derived type

• an object of derived type is made up of parts, subobjects.

– base class subobjects and the data members of the class in question

– the “most derived type”

• initialization order is top-down (and left-to-right if multiple inheritance)

– base class subobjects are initialized before subclass subobjects

– the first constructor to be called is that of the most derived class

– direct base class constructors are called recursively

– data members are initialized in the same order as they are declared within the class

• destruction order is reverse to initialization order – bottom-up (and right-to-left if multiple inheritance)

– data members are destroyed in the reverse order to how they are declared within the class

– direct base class destructors are then called, recursively

• if virtual inheritance

– all virtual base class subobjects are initialized first of all – top-down, left-to-right

– the non-virtual subobjects are initialized/destroyed as described above

– all virtual base class objects are destroyed last of all – bottom-up, right-to-left

• important that the top-most polymorphic base class have a virtual destructor

Person* p = new Consultant{ … };
…
delete p; // ~Person() or ~Consultant() ?

Person

Employee

Manager

Person

Employee

Consultant

Person

Employee

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 125

Using Person-Employee-Manager-Consultant

Person* pp; // can point to an Employee or a Manager or a Consultant object
Employee* pe; // can point to an Employee or a Manager or a Consultant object
Manager* pm; // can only point to an Manager object (since no subclasses to Manager)
Consultant* pc; // can only point to a Consultant object (ditto)

pm = new Manager{ name, crn, date, employment_nbr, salary, 17 };

pp = pm; // upcast is automatic – Manager* -> Person*

pm = dynamic_cast<Manager*>(pp); // downcast must be explicit – Person* -> Manager*

if (pm != nullptr) // do we have a Manager?
{

pm->print_department_list(cout);
}

• polymorphic pointers – can point to objects of the pointee type and subtypes

• upcast is an automatic and safe type conversion

• downcast must be explicit and possibly checked before use

– print_department_list() is specific for Manager and can only be invoked using a pointer of type Manager* (or reference Manager&)

• the object is not affected – once a Manager is always a Manager

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 126

Dynamic type check and dynamic type conversion

• sometimes you need to find out type information for a polymorphic object during execution

– what kind of object does a polymorphic pointer point to?

– what kind of object does a polymorphic reference refer to?

• sometimes you need to do dynamic type conversion, e.g.

– if a subclass have a member function which is not inherited, as e.g. Manager::print_department_list()

– and an object of the subclass is referred by a base class pointer or a base class reference

– and you want to call the member function

• typeid expressions can be used to

– check if an object have a specific type

– check the type of an expression

– can be applied to all types

– include <typeinfo>

• dynamic_cast can be used

– only for polymorphic types – require the type information such objects keep

– to check if an object have a specific type or is a subtype to some type

– to convert a polymorphic pointer or a polymorphic reference

• static_cast is possible to use also when converting polymorphic pointers and references, but without dynamic type checks

– you need to be absolutely sure it’s correct to do

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 127

Dynamic type control using typeid expressions

One way to find out the type of an object is to use typeid

if (typeid(*p) == typeid(Manager)) …

• can be used for type names, all kind of objects, and all kind of expressions

• a typeid expression returns a type_info object (a class type)

• type checking is done by comparing two type_info objects

typeid expressions:

typeid(*p) // p is a pointer to an object of some type

typeid(r) // r is a reference to an object of some type

typeid(T) // T is a type

typeid(p) // is usually a mistake if p is a pointer

type_info operations:

== check if two type_info objects are equal – typeid(*p) == typeid(T)

!= check if two type_info objects are not equal – typeid(*p) != typeid(T)

name() returns the type name as a string – may be an internal name used by the compiler, a “mangled name”

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 128

Dynamic type conversion using dynamic_cast

dynamic_cast can be used to type convert polymorphic pointers and references.

dynamic_cast<T*>(p) // convert p to “pointer to T”

dynamic_cast<T&>(r) // convert r till “reference to T”

• typically used to “downcast”

– from a base type pointer to subtype pointer

– from base type reference to subtype reference

• if conversion fails

– in the pointer case, 0 is returned

– in the reference case, exception bad_cast is thrown

• “upcast” is automatic and safe

• in case of multiple inheritance “crosscast” can be of interest

class Derived : public Base, public Interface { … };

Base* pb{ new Derived };

Interface* pi = dynamic_cast<Interface*>(pb);

if (pi != nullptr) ...

Base

Derived

Interface

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 129

Virtual base classes – class lattice – subobject lattice

class B {
public:

int i;
static int s;
enum { e };

};

class X : virtual public B { … };

class Y : virtual public B { … };

class Z : public B { … };

class A : public X, public Y, public Z { … };

void F(A* p)
{

p->i++; // Ambiguous: two i in A
p->X::i++ // OK: qualification specifies
p->s++; // OK: only one s (static)
p->s = p->e // OK: only one e (enumerator)

}

B

X Y Z

A

virtual virtual

B2B1

X Y Z

A

class lattice:

subobject lattice:

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 130

Initialization and destruction of derived class objects with virtual base classes

When an object of type A is created the following takes place.

• first the constructor for the most derived class – A – is called

– constructors for all virtual subobjects are called top-down, left-to-right (B1)

– a member initializer for B is required in A, unless default initialized

• then the direct non-virtual base subobjects to A are constructed in declaration
order – X, Y, Z – recursively

– any non-virtual base subobjects are constructed

– any non-static data member subobjects are constructed in declaration order

– the constructor body is executed

Initialization order: B1 –> X –> Y –> B2 –> Z –> A

• an object comes into existence first after its constructor body has succeded

– if construction fails, already constructed subobjects are destroyed in reverse
construction order

– the subobject that construction failed for never existed

• all non-abstract classes in a class lattice must have initializers for virtual base
classes, unless virtual bases have default construction

– initializers for virtual bases are ignored in all constructors except in the
constructor for the most derived class

X, Y and A (if non-abstract) must all have an member initializer for B, or rely on a default constructor.

B2B1

X Y Z

A

subobject lattice:

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 131

An example of real use of virtual base classes

The standard stream classes:

basic_ios

basic_istringstream

basic_iostream

basic_fstream basic_ofstreambasic_ifstream basic_stringstream basic_ostringstream

ios_base

basic_ostreambasic_istream

virtualvirtual

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 132

Comments on derived class design

• prevent subclassing by marking a class final

• make compiler check overridings by marking virtual function declarations override

• prevent further overriding by marking a virtual function final

• make a base class destructor

– public and virtual, if deletion through a base class pointer should be allowed (typically for polymorphic types)

– protected and non-virtual otherwise, if class is abstract

– a compiler generated destructor is public and non-virtual (unless there is a base class having a virtual destructor)

– if a base class has a virtual destructor, generated subclass destructors will also be virtual

• default and delete special member functions properly

– if the copy/move constructors are desired and can be generated – default with proper access (public, protected)

– if copying is not allowed, delete the copy constructor – the move constructor is not generated

– if the copy constructor is declared but the move constructor is not desired – do not delete the move constructor!

– an explicitly deleted member function will implicitly be private – compile error if chosen in overload resolution

– analogous for copy assignment and move assignment operators

• avoid calling virtual functions in constructors and destructors

– virtual functions don’t behave virtual in constructors and destructors

– a Manager object have dynamic type Person when the Person constructor/destructor is executing

– use som “post-construction” technique if virtual dispatch into a derived class is needed from a base constructor

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-02-11)

TDDD38 APiC++ Derived Classes, Inheritance, Polymorphism and RTTI 133

Comments on derived class design, cont.

• avoid slicing

– slicing is automatic, invisible and likely to create problems

– typically occur when a function has a value parameter of base type (& forgotten?)

– to allow for explicit slicing the copy constructor can be declared explicit, to avoid unexpected use

explicit C::C(const C);

• consider a virtual copy function for copying polymorphic types – clone()

– prevents slicing

– other ways to copy should be restricted to internal use only – make copy/move constructors protected, e.g.

• consider making virtual functions non-public and public functions non-virtual

– separates the public interface from the customization interface – the NVI pattern

– especially interesting for base classes with a high cost of change (libraries, frameworks, etc.)

• consider containment instead of inheritance

– prefer containment if no real gain using derivation

