TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 96
Derived classes

C++ has arelatively complete and complicated derivation mechanism.

supports several inheritance models

— singleinheritance — only one direct base class

— multiple inheritance — two or more direct base classes

— repeated inheritance — an indirect base classis inherited several times through multiple inheritance

— multiple and repeated inheritance can lead to ambiguities and other problems — need for ways to solve such —virtual inheritance
— static members, nested types and enumerators are class members — can always be found unambiguously

several ways to specify access to base class membersin a derived class

— public —public members of the base class are accessible as public in the derived class, protected members as protected
— protected — public members of the base class are accessible as protected in the derived class, protected members as protected
— private—public and protected members of the base class are accessible as private in the derived class
— default accessispublicif abase classisastruct, privateif itisaclass
« incase of repeated inheritance the number of subobjects of a repeatedly inherited base class can (must) be controlled
— virtual base class—in combination with one of the three above, e.g. virtual public
« polymorphic behaviour is controlled by the programmer
— only virtual functions can be bound dynamically and have polymorphic behaviour
— objects must be referred to by pointers or references, if virtual function calls are to be bound dynamically
— the overhead of polymorphism can be avoided if not desired — don’t declare any virtual functions unless required

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 98
Class Person

cl ass Person

Person

publ i c: (abstract)

virtual ~Person() = default;

virtual Person* clone() const = 0;
virtual std::string str() const;

std::string get_name() const;
voi d set _name(const std::string&);

CRN get_crn() const;
voi d set_crn(const CRN&);

protected:
Person(const std::string& name, const CRN& crn);
Person(const Person&) = default;

private:
Per son& oper at or =(const Person&) = del ete;

std::string name_;
CRN crn_;
H

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 97

Person-Employee-Manager-Consultant — a polymorphic class hierarchy

Design of asimple polymorphic class hierarchy for different categories of employees

. . Person
« classrepresenting personsin general — Person (abstract)
— have name and civic registration number AN
— all employees shall share the properties of this class
— no Persons are to be created — shall be an abstract class Employee
« classfor employeesin general — Employee 7~
— have employment date, employment number and salary, works at a department
— Employees are to be created — shall be a concrete class
« classfor employees that also are department managers— M anager | Manager | Consultant
— manages a department and its employees

class for (temporary) employees that are consultants — Consultant

— no actual difference to employeesin general but need to be distinguishable

« objects are supposed to be referred to by pointers and created dynamically

— otherwise no polymorphic behaviour, and the way objects are copied require dynamic allocation

— other polymorphic type objects may be declared statically and polymorhism obtained to by reference passing

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 99
Comments on Person

« basically atrivial class
— well-behaved data members regarding initialization, copying/moving, and destruction
— generated copy constructor and move constructor are fine, but allowed only for internal use — protected and default
— no obvious use of move constructor, but since the copy constructor is allowed...
« defaulted and deleted member functions
— the default constructor is not generated when another constructor is declared — could be defaulted if required
— copy assignment shall not be allowed — deleted — access specification does not matter, it will be private regardless
— move assignment is not generated because of other declared special member functions (more about this later)
— only special member functions can be defaulted — any function can be deleted
virtual functions — virtual

— virtual functions can be overridden by subclasses

— happensif afunction with the same signature is declared in asubclass — virtual isthen optional
— afunction in a subclass with the same name but with different signature will instead hide

— makes the class polymorphic

.

pure virtual function
— apure specifier = 0 makes avirtual function publicly non-callable
— can have a separate definition — must, if adestructor — callable by other member functions, and from subclass member functions
— purevirtual functions are inherited — a subclass becomes abstract unless all inherited pure virtual functions are overridden
— makes the class abstract

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 100
Comments on Person, cont.

« polymorphic class
— havevirtual functions, own or inherited
— must have avirtual destructor to ensure correct destruction of subobjects
objects will contain type information — used when calling virtual functions and by dynamic_cast
— objectswill contain avirtual table (e.g. __vt abl e) —implementation technique for calling virtual functions (generated by compiler)
abstract class

— no free-standing objects can be created

protected constructors
— since Person is abstract there is no need for any public constructor
— protected constructors can be used to emphasizes abstractness

static type and dynamic type
Person* p{ new Enpl oyee{ ...} }; I/ p hasdtatictype“ pointer to Per son”
p->cl one(); /1 the dynamic type of the expression *p is Enpl oyee

— the static typeis used during compilation to check if clone() isvalid for the kind og object that p kan point to
— the dynamic typeis used during execution to bind the overriding of clone() corresponding to the object p actually pointsto

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 102
Member function str()

virtual string Person::str() const;
Definition:

string Person::str() const

{
}

return nane_ + + crn_.str();

A call will be bound dynamically, if the object in question isreferred to by a pointer or areference
« the dynamic type decides which overriding to be called

Person* p = new Manager{ nane, crn, date, enploynent_nunber, salary, dept };
cout << p->str() << endl;

— pointer p has static type Per son*
— expression *p hasdynamic type Manager

(*p).str()
— Manager: :str() iscalled—we prefer the arrow operator in this case

p->str()

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 101
Constructor taking name and civic registration number

Person: : Person(const std::string& name, const CRN& crn)
nane_{ nane }, crn_{ crn }
{}
Ensures that a new Person always have a name an acivic registration number.
« default constructor is eliminated
« no other constructor is available that can initialize an object in some other way, except the copy and move constructor
« only to be used by corresponding direct subclass constructors — declared protected

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 103
Member function clone()
virtual Person* clone() const = 0;

A polymorphic class needs a polymor phic copy function.
« the copy constructor could be used, but it would be very cumbersome

« polymorphic class objects are often allocated dynamically and handled with polymorphic pointers
Person* p = new Manager{ name, crn, date, enploynent_nunber, salary, dept };
Person* copy = p->clone();

« every concrete subclass must have its own, specific, overriding of clone()
— it'sthe programmer’ s responsibility to ensure this
— it'spossible to code so the compiler can check this
« suitable candidate for making Person abstract
— we have decided to not allow Person objects a such
— made pure virtual by the pure specifier (= 0)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI
Subclass Employee

cl ass Enpl oyee : public Person

{
public:
Enpl oyee(const std::string& nane,

const CRN& crn,
const Date& e_date,
const int e_nunber,
const doubl e sal ary,
const int dept = 0);

~Enmpl oyee() = default;
Enpl oyee* clone() const override; /1 notereturn type!
std::string str() const override;

int get_departnment() const;
Dat e get_enpl oyment _date() const;

int get _enpl oynment _nunber () const;
doubl e get_sal ary() const;

prot ect ed:
Enpl oyee(const Enpl oyee&) = default;

File: Derivation-Polymorphism-RTTI-OH-en

Person
(abstract)

/\

104

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI

Comments on Employee

trivial class
— same considerations as for Person

an Employee object consists of a subobject of type Person and the specific Employee data members
— the Person subobject is by definition initialized before the other members of Employee

— the Person subobject is by definition destroyed after the other members of Employee

— theonly way to pass arguments to a base class constructor is by a member initializer

both virtual functions are overridden

— Employeeisto be aconcrete class

— require a specific version of str()

clone() must be overridden for every concrete class

— marking avirtual function with overri de makes the compiler check thereis such avirtual function to be overridden

Enpl oyee* clone() const override;

— recommended style isto not declare virtual when using overri de
* Manager is declared friend

— all member functions of Manager is given unrestricted access to all Employee members, including private members

— friendship creates stronger coupling than derivation — derivation does not give access to private members

— why Employee declares Manager afriend we leaveto later ...

File: Derivation-Polymorphism-RTTI-OH-en

106

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI

private:
Enpl oyee& operat or=(const Enpl oyee&) = del ete;
friend class Manager;
voi d set_departnent (const int dept);

voi d set_sal ary(const doubl e sal ary);

Dat e e_date_;

int e_nunber _;
doubl e salary_;
int dept _;

File: Derivation-Polymorphism-RTTI-OH-en

105

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI
Employee’s public constructor

Enpl oyee: : Enpl oyee(const string& nane,
const CRN& crn,

const Date& e_date,
const int e_nbr,
const double salary,
const int dept)

Person{name, crn}, e_date_{e_date}, e_nunber_{e_nbr}, salary_{salary},
{}
« Person subobject is by definition initialized first
— write the Person initializer first in the member initializer list
— avoids unnecessary warnings
« Employee data members are then initialized in declaration order
— write the member initializersin that order
— avoids unnecessary warnings

File: Derivation-Polymorphism-RTTI-OH-en

dept _{dept}

107

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 108

Member function str() overridden

string Enpl oyee::str() const override

{
}

return Person::str() + " (Enployee) " + e_date_.str() + ' ' + std::to_string(dept_);

e cals str() forthePerson subobject to produce part of the string to return
e std::to_string() isoverloaded for all fundamental types

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 ARPIC++ Derived Classes, Inheritance, Polymorphism and RTTI 110

Subclass Manager

cl ass Manager : public Enployee

Person
public: (abstract)
Manager (const std::string& nane,
const CRN& crn,
const Date& e_date,
const int e_nunber, Employee
const doubl e sal ary,
const int dept);

~Manager () = defaul t;

Manager* cl one() const override;

std::string str() const override;

voi d add_depart nent _nmenber (Enpl oyee* ep) const;

voi d renove_depart ment _nmenber (const int e_nunber) const;
void print_department_|ist(std::ostrean®) const;

voi d raise_sal ary(const double percent) const;

protected:
Manager (const Manager & = default;

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 109

Member function clone() overridden

Enpl oyee* clone() const override

{
}

return new Enpl oyee{ *this };

shall create adynamically alocated copy of the object for which clone() is called, and return a pointer to that object
the copy constructor is the natural choice to make a copy

since the return type belongs to a polymorphic class hierarchy we are allowed to adapt it
Enpl oyee* pl= new Enpl oyee{ nane, crn, date, enploynent_nbr, salary };
Enpl oyee* p2 = pl->clone(); /1 no cast needed if clone() returns Employee*

Per son* p3 = pl->clone(); /1 implicit upcast — Employee* to Person*

the types are said to be covariant
— adapting the return type for clone() is allowed because of their close relation to each other

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 111

private:
Manager & oper at or =(const Manager &) = del ete;
/1 Manager & oper at or =(Manager &&) ; isnot generated

/1 Manager does not own the group members objects, no clean-up required
/1 Employment number is key
mut abl e std:: map<int, Enployee*> dept_nenbers_;

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 112
Comments on Manager

« trivial class
— well-behaved std::map member dept_members_— default initialized to an empty map
— otherwise same considerations and measures taken as for Employee and Person
« aManager object consists of a subobject of type Employee, which in turn consists of a subobject of type Person, and a std::map object
— base members are initialized top-down — Person subobject first, then Employee subobject, thereafter dept_members
— destruction is performed in the opposite order — dept_members_— Employee members — Person members
« dept_members_isdeclared mutable
— add_department_member() och remove_department_member() modifies the object
— we prefer to regard them as non-modifying operations from a public point of view — const
— mutable alow dept_members_to be modified by const member functions
* Manager was declared friend by Employee
— Manager does not access any private members of Employee — so why?
— wewill soon find out...

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 114
Member function clone() overridden

Manager* cl one() const override

{
}

return new Manager{ *this };

Suppose we forget to override clone() in Manager.
« thefinal overrider isthen Employee::clone()
« instead of aManager clone() would return an Employee
— copied from the Employee subobject of the Manager which was to be copied
— Employee copy constructor creates the copy —member by member copy of the Employee data members

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 113
Manager’s public constructor

Manager (const std::string& nane,

const CRN& crn,
const Date& e_date,
const int e_nunber,
const doubl e sal ary,
const int dept)

Enpl oyee{ name, crn, e_date, e_nunber, salary, dept }

{}

« all parameters are passed as arguments to direct base class Employee’s constructor

« dept_members_ have default construction —an empty employee list is created for anew Manager

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 115
Adding and removing department employees is done by Manager

voi d Manager: : add_depart ment _nenber (Enpl oyee* ep) const

{
/'l Set employee's department to same as manager's department
ep- >set _departnent (get _departnent()); /1 require friendship
/1 Add employee to department members
dept _nenbers_. i nsert (nake_pair(ep->get _enpl oynent _nunber (), ep));
}

« Manager must be friend of Employee, to be allowed to call Employee::set_department() in this context
— function parameter ep is apointer to an Employee
— only public operations are then allowed (unless Manager is a friend of Employee)

« it makes no difference if set_department() had been protected, Manager must still be friend
— protected accessis only alowed when the accessed object is a subobject of the accessing object

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 116

Consultant
class Consultant final : public Enployee /1 no subclassing
Person
public: (abstract)
usi ng Enpl oyee: : Enpl oyee; /1 inheriting constructors

~Consul tant () = default;

Employee

Consul tant* cl one() const override;

std::string str() const override;
Consultant

protect ed:
Consul tant (const Consul tant&) = default;

private:
Consul t ant & operat or=(const Consultant& = del ete;

I

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 ARPIC++ Derived Classes, Inheritance, Polymorphism and RTTI 118
The using declaration in class scope
« ausing-declaration introduces aname in the declarative region in which it appears
usi ng nane; /1 an aliasfor the name of some entity declared elsewhere
« can be used in class scope to introduce names from a base class
usi ng Base: : hi dden;
— inheriting constructors
usi ng Base: : Base;

« thealias created has the usual accessibility for amember declaration
— anadiascan beapublic alias for a protected member
— ausing-declaration can not make a private member of abase class (more) accessible

« member functions in the derived class override and/or hide member functions with the same name and
parameter types in the base class

« can not be used to resolve inherited member ambiguities
Note: A using-directive can not appear in class scope, so the following is not alowed in class scope:

usi ng namespace std;

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 117
Comments on Consultant

« noreal difference compared to Employee
— same data members, same set of operations

« we want to be able distinguish consultants from ordinary employees
— subtyping isaway to allow for that by dynamic type checks

« makingaclass fi nal

class Consultant final : public Enployee

— not alowed to derive from Consultant

« marking avirtual function fi nal
string str() const override final;

— such afunction is not allowed to override in subclasses
« inheriting constructors
usi ng Enpl oyee: : Enpl oyee;

— naming aconstructor in anested using declaration opens for inheriting constructors from a base class
— the public constructor for Manager and Consultant isinheried from Employee
— our special member functions must still be declared

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 119

Using the using declaration in class scope

class A
public:
void f();
void h(); /1 h canbenamedina using declaration, sinceno private h
prot ect ed:
void h(int);
void g(); /1 g canbenamedina using declaration, since no privateg
void g(int);
void p();
private:
void f(int); /1 using A::f notpossible (access control)
void p(int); /1 using A::p notpossible (access control)
h
class B : public A
{
public:
using A::h; /11 OK
using A :g; /1 OK
using A :p; /1 error: void A::p(int) isprivatewithin thiscontext
private:
using A :f; /'l error: void A :f(int) isprivatewithinthiscontext
I

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 120
Inheritance and special member functions

« The default constructor and the copy/move constructors are not inherited,
— implicitly-declared in aderived class, if not user declared

« Thedestructor is not inherited,
— implicitly-declared, if not user declared

« Operator functions are inherited, but

— inherited copy/move assignment operators are always hidden, either by implicitly-declared or user declared copy/move assignment
operators of the derived class

« A using-declaration that brings in a copy/move constructor or a copy/move assignment operator from the base classis not concidered an
explicit declaration and does not supress the implicit declaration of these functions in the derived class. Such special member functions
introduced by a using-declaration is therefore hidden by the implicit declaration.

* A using-declaration cannot refer to a destructor for a base class.

« Other constructors brought in from a base class by a using-declaration are inherited.

For Consultant this gives that

« thedefault constructor is not inherited (never is), and is not implicitly-declared since other constructors are declared

« the copy/move constructors are not inherited (never is) —are user declared (defaulted)

« thedestructor is not inherited (never is) —is user declared (defaulted)

« the copy assignment operator isinherited but hidden, as aways, in this case by a user-declared (deleted) copy assignment operator
« the move assignment operator is not implicitly-declared since, e.g., the copy assignment operator is explicitly declared

« the user-declared public contructor of Employee is inherited, because of the using-declaration using Employee::Employee;

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 122
NVI str() and to_str()
« thenon-virtua public member str() isinherited by subclasses

std::string Person::str() const

{
}

— acall to str() will be bound statically

— acall toto_str() will be bound dynamically

— thetype of the this pointer reflects the type of the object that have called the function
« definition of to_str() for Person

return to_str(); /1 explicitly this->to_str()

string Person::to_str() const

{
}

return nane_ + ' ' + crn_.str();

— to be overridden by subclasses, might be used by subclass implementation

Note: It is allowed to override avirtual function, even if it is declared private in the base class.

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 121
The NVI pattern — Non-Virtual Interface

cl ass Person

{

public:

std::string str() const;
Person* clone() const;
private:

virtual std::string to_str() const;
virtual Person* make_clone() const = 0;
I
— public str() and clone() are declared non-virtual
— implemented by call-through to a corresponding private virtual function to_str() and make_clone(), respectively
— subclasses override to_str() and make_clone()

The Non-Virtual Interface pattern eliminates the problem that a public virtual function really do two things:
« specifiesinterface
« specifiesimplementation — namely internal customizable behaviour

NV keeps public interface apart from implementation — makes it easier to modify implementation without affecting clients.

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 123
NVI clone() and make_clone()

Per son* Person::clone() const

{
Person* p = make_cl one(); 11 explicitly: t hi s->make_cl one()
/1 assert will fail if thecopy *p doesn't have sametypeastheoriginal, *t hi s
assert(typeid(*p) == typeid(*this) & "make_clone() incorrectly overridden");
return p;
}

« thenon-virtual public member clone() isinherited by subclasses
— thestring literal "make_clone() incorrectly overridden” is converted to truein this context
— assert will not fail if the copied object (*p) and the original (*this) have same type—true && trueistrue
— the purpose of the right hand side of && isthat thistext isto appear in the error message when the actual assertion fails

« make_clone() for Person is pure virtua
virtual Person* make_clone() const = 0;

— every concrete subclass must override make_clone()
— theassert will check this, but unfortunately not until runtime

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 124

Initialization and destruction of objects of derived type

i . . . Person
« anobject of derived typeis made up of parts, subobjects.
— base class subobjects and the data members of the classin question
. Employee
— the“ most derived type”

« initialization order is top-down (and left-to-right if multiple inheritance)
— base class subobjects are initialized before subclass subobjects
— thefirst constructor to be called is that of the most derived class

— direct base class constructors are called recursively Person
— datamembers areinitialized in the same order as they are declared within the class
« destruction order is reverseto initialization order — bottom-up (and right-to-left if multiple inheritance) Employee
— datamembers are destroyed in the reverse order to how they are declared within the class Manager
— direct base class destructors are then called, recursively
« if virtual inheritance
— all virtual base class subobjects are initialized first of all —top-down, |eft-to-right
— thenon-virtual subobjects are initialized/destroyed as described above
— all virtual base class objects are destroyed last of all — bottom-up, right-to-left Person
« important that the top-most polymorphic base class have avirtua destructor
Person* p = new Consul tant{ ...}; Employee
del ete p; /1 ~Person() or ~Consul tant () ? Consultant

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 125

Using Person-Employee-Manager-Consultant

Per son* pp; // canpointtoan Employee or a Manager or a Consultant object
Enpl oyee* pe; // canpointtoan Employee or a Manager or a Consultant object
Manager * pm // canonly point to an Manager object (since no subclasses to Manager)

Consul tant* pc; // canonly pointto a Consultant object (ditto)

pm = new Manager{ nane, crn, date, enploynent_nbr, salary, 17 };

pp = pm /'l upcastisautomatic— Manager* -> Person*

pm = dynam c_cast <Manager *>(pp) ; /'l downcast must be explicit— Per son* -> Manager*
/1 dowehaveaManager ?

if (pm!= nullptr)
{

pm >print_department _|ist(cout);

« polymorphic pointers — can point to objects of the pointee type and subtypes
« upcast is an automatic and safe type conversion
« downcast must be explicit and possibly checked before use
— print_department_list() is specific for Manager and can only be invoked using a pointer of type Manager* (or reference Manager&)
« theobject is not affected — once a Manager is always a Manager

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 ARPIC++ Derived Classes, Inheritance, Polymorphism and RTTI 126

Dynamic type check and dynamic type conversion

sometimes you need to find out type information for a polymorphic object during execution
— what kind of object does a polymorphic pointer point to?
— what kind of object does a polymorphic reference refer to?

sometimes you need to do dynamic type conversion, e.g.

— if asubclass have amember function which is not inherited, as e.g. Manager::print_department_list()
— and an object of the subclassis referred by a base class pointer or a base class reference

— and you want to call the member function

typeid expressions can be used to

— check if an object have a specific type
— check the type of an expression

— can be applied to all types

— include <typeinfo>

dynamic_cast can be used

— only for polymorphic types — require the type information such objects keep
— to check if an object have a specific type or is a subtype to some type

— to convert a polymorphic pointer or a polymorphic reference

static_cast is possible to use aso when converting polymorphic pointers and references, but without dynamic type checks

— you need to be absolutely sureit’s correct to do

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 127
Dynamic type control using typeid expressions
Oneway to find out the type of an objectistouset ypei d

if (typeid(*p) == typeid(Manager))

« can be used for type names, all kind of objects, and all kind of expressions
« atypeid expressionreturnsat ype_i nf o object (aclasstype)

« type checking is done by comparing twot ype_i nf o objects
typei d expressions:

typei d(*p) /1 p isapointer toan object of some type

typeid(r) /1 r isareferenceto an object of some type
typei d(T) /1l Tisatype
typei d(p) /1 isusually amistakeif p isapointer

type_i nf o operations:
== checkiftwot ype_i nf o objectsareequal — typei d(*p) == typei d(T)
1= checkiftwot ype_i nf o objectsarenot equal — typei d(*p) != typeid(T)

name() returns the type name asa string — may be an internal name used by the compiler, a “ mangled name”

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 128
Dynamic type conversion using dynamic_cast
dynani c_cast can be used to type convert polymorphic pointers and references.

dynam c_cast <T*>(p) /1 convert p to“pointer to T”

dynam c_cast <T&>(r) /1 convert r till “referenceto T"

« typically used to “ downcast”
— from abase type pointer to subtype pointer
— from base type reference to subtype reference
« if conversion fails
— inthe pointer case, O is returned
— inthereference case, exception bad_cast isthrown
« “upcast” isautomatic and safe
« incase of multiple inheritance “ crosscast” can be of interest

class Derived : public Base, public Interface { ...}; | Base | | Interface |
. AN /\

Base* pb{ new Derived };

Interface* pi = dynanic_cast<lnterface*>(pb);

if (pi !'= nullptr)

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 129

Virtual base classes — class lattice — subobject lattice

class B { classlattice:
public:

int i; B

static int s; /T\
b enum{ e }; virtual virtual
' X Y VA
class X : virtual public B { ..}; \T/
class Y : virtual public B { ..}; A

class Z : public B { ..},
class A: public X, public Y, public Z .h . .
P P P tol subobject lattice:

voi d F(A* p) B,
{

By
p->i ++; /1 Ambiguous: two i in A / \ T

p->X i ++ /1 OK: qualification specifies
p- >s++; /1 OK:onlyone s (static)

X Y VA
p->s = p->e /1 OK:onlyone e (enumerator) \ T/
}
A

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 ARPIC++ Derived Classes, Inheritance, Polymorphism and RTTI 130
Initialization and destruction of derived class objects with virtual base classes

When an object of type A is created the following takes place. subobject lattice:
« first the constructor for the most derived class— A —iscalled

— constructors for all virtual subobjects are called top-down, left-to-right (B) Bl 82
— amember initializer for B isrequired in A, unless default initialized /4 \ T

« then the direct non-virtual base subobjectsto A are constructed in declaration
X Y A
A

order — X, Y, Z —recursively

— any non-virtual base subobjects are constructed

— any non-static data member subobjects are constructed in declaration order
— the constructor body is executed

Initigizationorder: B; —> X —> Y —> B, —> Z —> A

« an object comesinto existence first after its constructor body has succeded

— if construction fails, already constructed subobjects are destroyed in reverse
construction order

— the subobject that construction failed for never existed

« all non-abstract classesin aclass lattice must have initializers for virtual base
classes, unless virtual bases have default construction

— initidizersfor virtual bases areignored in all constructors except in the
constructor for the most derived class

X, Y and A (if non-abstract) must al have an member initializer for B, or rely on adefault constructor.

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 131
An example of real use of virtual base classes

The standard stream classes:

ios_base
basic_ios

virtual virtual

basic_istream basic_ostream
L% Z% ANIIVAN
[

AN

‘basicﬁistringstreamH basic_ifstream ‘ ‘basicﬁstringstreamH basic_fstream ‘ ‘basicﬁostringstreamH basic_ofstream ‘

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI 132

Comments on derived class design

prevent subclassing by marking aclass fi nal

make compiler check overridings by marking virtual function declarationsoverri de
prevent further overriding by marking avirtual function fi nal

make a base class destructor

public and virtual, if deletion through a base class pointer should be allowed (typically for polymorphic types)
protected and non-virtual otherwise, if classis abstract

acompiler generated destructor is public and non-virtual (unless there is a base class having avirtual destructor)
if abase class has avirtual destructor, generated subclass destructors will also be virtual

default and delete specia member functions properly

if the copy/move constructors are desired and can be generated — default with proper access (public, protected)
if copying is not allowed, delete the copy constructor — the move constructor is not generated

if the copy constructor is declared but the move constructor is not desired — do not delete the move constructor!
an explicitly deleted member function will implicitly be private — compile error if chosen in overload resolution
analogous for copy assignment and move assignment operators

« avoid calling virtual functionsin constructors and destructors

virtual functions don’t behave virtual in constructors and destructors
aManager object have dynamic type Person when the Person constructor/destructor is executing
use som “post-construction” technique if virtual dispatch into aderived class is needed from a base constructor

File: Derivation-Polymorphism-RTTI-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

TDDD38 APIC++ Derived Classes, Inheritance, Polymorphism and RTTI
Comments on derived class design, cont.

« avoid dlicing
— dlicing isautomatic, invisible and likely to create problems
— typically occur when afunction has a value parameter of base type (& forgotten?)

133

— to alow for explicit slicing the copy constructor can be declared explicit, to avoid unexpected use

explicit C:C(const C);

« consider avirtual copy function for copying polymorphic types — clone()
— preventsslicing

— other ways to copy should be restricted to internal use only — make copy/move constructors protected, e.g.

« consider making virtual functions non-public and public functions non-virtual

— separates the public interface from the customization interface —the NV pattern

— especially interesting for base classes with a high cost of change (libraries, frameworks, etc.)

« consider containment instead of inheritance

— prefer containment if no real gain using derivation

File: Derivation-Polymorphism-RTTI-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-02-11)

