Advanced Programming in C++
2013

Standard Library and related

These exercises cover different parts of the C++ standard library. Their purposeisto support you inyour
studies to prepare for the computer examination. There are also some larger exercises given separately,
which are highly recommended. Most of the programming exercises given here are supposed to lead to
rather small solutions, while most of the exercises given separately, in most cases, lead to more compre-
hensive coding.

The exercises given here are divided into different topics, with respect to their main feature. Some
exercises may therefore actually cover several topics.

 Standard containers and algorithms
* Function objects

* |terators

* Numerics

Manipulators (streams) Don't prioritize!

Standard containersand algorithms

If nothing elseis specified in the exercises, use standard algorithms, function objects (standard or
defined by you), iterators, etc., rather than loops (for, while, do), ordinary functions, indexing, etc.

vector

1 Write a program which creates a vector<char > which stores the letters a-z in order. Print the
elementsin the vector in order and in reverse order using std::copy.

2. Create avector<string> and read alist with names of car brandsinto the vector. Sort the list using
std::sort and print the result using std::copy. Thereis agiven text file with car brands, named
cars of the world.txt.

3. Rewrite exercise 2. Instead of printing all cars using std::copy(), construct aloop for printing al
car brandsin the list in exercise 2, which begins with a certain letter, e.g all car brands beginning
with’A’. Try both the ordinary for loop, with iterators, and the range based for loop.

4, Rewrite exercise 2. Instead of printing all cars, print just those fulfilling a predicate. Define a
binary predicate, which takes two strings and checks if the first character of thefirst string is
equal to any of the charactersin the second string, regardless of case. Use std::copy_if and your
predicate to print al car brands beginning with, e.g. A, B or C.

5. Rewrite exercise 2. Before printing the cars, their names are to be lower-cased. Define afunction
object classto lower case the lettersin astring. Use std::transform() and such afunction object to
iterate over all cars and lower-case their names.

6. Implement, using standard functions such as make_heap, pop_heap and push_heap, but not
sort_heap, the sorting method Heapsort on a std::vector. Heapsort agorithm:

* the content of the vector isfirst ordered as a max-heap

* then, repeatedly, until the size of the heap is reduced to one, swap thefirst and last element in
the remaining heap part of the vector — reduce the heap size by one — restore heap order.

* the values in the vector are now stored in increasing order.

7. The following code is found in a program, where the vector v is populated with int valuesin
some way, and then sorted as shown.

vector<int> v;
sort(v.begin(), v.end(), greater<int>());

Add code to then read one integer value at atime from cin, search for the value in v with
std::binary_search and print if avalue was found or not.

8. Thisisan exercise on using avariety of standard library components. Write a program which
does the following, mainly by using standard algorithms, function objects, etc., when possible:

a) Read word from atext on file and store the wordsin the text in a std::vector. Use std::copy
to read from the file and insert into the vector.

b) Sort thewordsin aphabetic order, and print the sorted words.
¢) Removeal duplicates, and print the remaining unique words.

d) Sort again, but this time with respect to word length, keeping the alphabetic order for
words of equal length. Print the result.

€) Count the number of words which are longer than a certain length, e.g five letters. The
portion of words which exceeds thisword length is printed, e.g as a percentage of the total
number of words in the text read (this can be measure of the complexity of atext.)

f) Remove certain words (e.g a, and, but, do, if, in, is, its, not, of, or, that, the, to). Print the
words that now remains. The words to remove can be stored in, e.g., a vector.

list

map

Lo

Modify the program in exercise 8, so the words are stored in containers of type std::list instead of
std::vector. Thiswill reveal some differences concerning std::vector and std::list.

Write a program that reads pairs of positive integer numbers from atext file and calcul ates the
greatest common divisor (GCD) for each pair. Each pair iswritten on a separate line in the input
text file and you may assume that input files always contains full pairs.

Define afully featured function object class for GCD.

Defineaan ordinary function (you can make it atemplate though) for three column output, given
an output stream, an output field width, and iterators for iterating over three input ranges of
(supposed to have) equal length.

Usethree lists, one list for the first numbers of the pairs, another for the second numbers of the
pair, and athird for the GCDs.

Write afunction make xref(), which, given an input stream, a vector <string> with given words,
and an empty map<string, vector<int>>, creates a cross-reference in the map for the given
words. The input stream is supposed to be a text with words and separating white space only.
When all words in the input stream have been read, the map shall, for each given word, store the
lines in the input where the word was found.

Also write afunction print_xref(), for printing the cross-reference map created by make xref().
print_xref() shall take an output stream and the cross-reference map. If the given words were
algorithms, containers, functions, and objects, the output from print_xref() could be as follows.

algorithms 2, 7, 8.
containers 1, 4, 5.
functions 9.
objects 2, 7.

This exerciseis supposed to show how standard library components and some own coding can be
combined to solve arather complicated operation in afairly concise way.

Modification: Replace the vector for storing line numbers with a std::set.
In amap cars, declared as
map<string, list<string>> cars;

the keys are supposed to be names of countries, and for each country thereisalist of the car
brands produced in that country. To add a car brand for at certain country, which of the following
operations is most suitable?

a) cars.insert(country, car);

b) carqcountry] = car;

C) carsinsert(country).insert(car);
d) cargcountry].push_back(car);

Write a program which lists all distinct wordsin afile in aphabetic order. In this case, aword is
a sequence of letters, and words are delimited by arbitrary sequences of characters that are not
letters. Use std::set to store the words.

Overload operator << to output the elements of a set, one per line. Use std::copy and a stream
iterator.

Note: In exercise 3-7 standard algorithms, such as set_union, set_intersection, and other standard set
operations shall not be used if they directly implement the operation in question.

3. Overload oper ator + to compute the union of two sets A and B, A 0 B, i.e. the set of all elements
that are members of both A and B.

Note: Use of basic set operations.

4, Overload operator - to compute B’'s complement relativeto A, A-B, i.e. the set of al elements
that are members of A but not of B.
Note: Use of basic set operations.

5. Overload operator* to compute the intersection of two sets A and B, A n B, i.e. the set of al
elements that are members of both A and B.
Note: Use of basic set operations.

6. The set A isasubset of the set B, A [B, if each element in A isan member of B. The subset
relation can also be defined in terms of intersection and equality: A isasubset of B if, and only
if, the intersection of A and B, A n B, isequal to A. Use this definition to implement the subset
relation A 0 B asafunction template subset .

Note: Easy if you have solved exercise 5.

7. Use the function template subset defined in exercise 6, to overload <= to compute the subset
of two sets A and B, A n B.

Note: Simple addition to exercise 6.
multiset

1 Write afunction which sorts the elements of a std::vector using a std::multiset.

stack

1 Define a queue by using only two std::stack (classic problem).

queue
1 Implement, using std::queue, the sorting method Radix Sort.

Function objects

1 Define both a function and a function object class, which returns the middle value of three values
("median-of-three”). Write atest program, which uses these, both directly and by giving them to
afunction, to be used from the function. Compare how this works for functions and for function
objects.

2. Do thefollowing on a container, e.g. avector, with ints, using standard function objects, function
adapters, algorithms, and maybe also some own function objects:

a) Findsall vaueswhich are larger than a certain value.
b) Findsall valueswhich are not equal to certain value.
¢) Multiply all valueswith a certain factor.

Iterators
Many of the exercises for Operator overloading i the mixed exercises also include use of iterators.
1 Given the following for statement:

for (unsigned i = 0; i < line.size(); ++i)
if (line[i] =="")
space_count ++;

Assume that line is a std::string. Rewrite the for statement using string iterators. Also rewrite
using the range based for statement. It is also possible to count spaces using standard library
components only.

2. Write a program which reads integer numbers from cin using a std::istream_iterator. The
program shall print all even numbers, separated by spaces, to an output file, and all odd numbers,
one per line, to another output file. Use std::ostream_iterators for printing to the output files.

Numerics

1 Write a program which reads afile of floating point numbers, creates a complex number
(std::complex) of each pair read, and prints the complex numbers. If the number of floating point
number in thefileis odd, the last complex number shall be created with an imaginary part that is
0.0, and awarning shall be printed.

Manipulators
Only if you have time over and you want some odd exercises....
Note: Exercises 1-4 are related and supposed to be solved in order.

1 Define a simple manipulator tab, so atab character can be written to an output stream as the
example below shows. Thisisasimple exercise, see what basic_ostream::operator<< can offer.

cout << X << tab <<y << tab << z << endl;

2. Define a parameterized manipulator tab, which can take an argument specifying how many tab
characters to be printed to the output stream, according to the following example.

cout << tab(2) << x << endl;

Note 1: Parameterized manipulators need a bit more complicated solution, than non-parameterized. Do not
use smanip, which the standard manipulators do, since smanip isimplementation dependent, but instead
implement tab straightforward as a class.

Note 2: Its not the intent that this parameterized version of tab isto work together with the unpara-
meterized version of tab in exercise 1!

3. It is possible, with a more sophisticated solution than required to solve exercise 1 and 2, to make
the manipulator tab usable both with and without an argument, e.g in accordance with the follow-
ing example:

cout << tab(2) << x << tab <<y << tab << z << endl;
The basic ideas how to solve this should be found in the solutions to exercise 1 and 2. Now it
comes to combine thisin some way to avoid the problem which should arise if you have tried to

use the implementations of tab according to exercise 1 and 2 in one program (otherwise you have
made a more advanced solution in these exercises than actually demanded).

This exercise incorporate the use of severa constructs and techniques; class template, functions,
overloading, callback. Generalize the solution for the manipulator tab you have acquired in exer-
cise 3 above, so one can implement other manipulators which takes one argument, without hav-
ing to copy and modify all code for the manipulator tab. If you do this, one could, e.g., without
much effort make a parametrized variant of the manipulator endl:

cout << tab(2) << x << tab <<y << tab << z << endl (2);

Note: Besides the manipulation itself (in the case of tab, to print a number of tab characters) it can, in the
general case, also be of interest to be able to vary the type of the argument to the manipulator.

Define an output manipulator based which takes two argument, a number base (e.g between 2
and 16) and a number of type int, and prints the number the representation specified by the base.
The manipulator isto be used, e.g. in the following way (and in this case print 1011, since the
base 2 is specified):

cout << based(2, 11) << endl;

Define an output manipulator format for printing a value to an output stream right justified in an
output field of a specified width, and also with the possibility to specify afill character (if not
specified space, ’ ’, shall be default). Example of usage:

cout << format('a’, 4) << endl; /" a"
cout << format (999, 8, '"#') << endl; [" ####H##999"
cout << format (666, 6) << endl; /" 666"
cout << format("foo", 6) << endl; /" f oo"

Note: One can generalize, in analogy with exercise 4 above, to achieve reusable code for manipulators with
up to three arguments.

Given the declarations:

struct X {
int i;
X(int);
X operator+(int);

}

struct Y {
int i;
Y(X);
Y operator+(X);
operator int();

}

extern X operator*(X, Y);
extern int fun(X);

Which type conversions are performed in the following declarations and expressions:

X x{ 11}
Y ooy{ x};
int i{ 2};
10

10
10*y

fun(4711)
fun(y)
y ty
11147 + y

	Advanced Programming in C++
	Standard Library and related
	Standard containers and algorithms
	vector
	list
	map
	set
	multiset
	stack
	queue

	Function objects
	Iterators
	Numerics
	Manipulators

