TDDD38 - Advanced programming in C++ Mixins

1 Introduction

In games its very common to have multiple classes that are similar. In this assignment we
are going to work with classes that represent items a player can use.

We will have four types of items: Weapon, Armor, Shield and Sword. Each item in this
supposed game will have damage (how many hitpoints it will remove from enemies when
attacked) and defense (how many damage points will be removed when an enemy attack
the player). These ratings are retrieved by calling damage () and defense() respectively
on the item.

Here is a short summary of each item type:
Weapon Has a fixed damage stored in data member dmg and 0 defense.
Armor Has a fixed defense stored in data member def and 0 damage.

Shield Has a fixed damage stored in data member dmg and a fixed defense stored in data
member def. However it also has a data member factor which is multiplied with
def whenever defense is called.

Sword Has a name stored in a string name. Has a fixed damage stored in data member dmg
and a data member called factor that is multiplied with dmg whenever damage ()
is called. It has 0 defense.

There are multiple ways to implement this. Here is one way:

Item

+ damage() : double
+ defense() : double

Weapon Armor
+ dmg : double + def : double
+ damage() : double + damage() : double
+ defense() : double + defense() : double
Sword Shield

+ dmg : double

+ factor : double 4 factor : double

+ name : std:string

+ damage() : double
+ defense() : double

+ damage() : double

With the following implementations:



TDDD38 - Advanced programming in C++ Mixins

double Weapon::damage () const

{

return dmg;

}

double Weapon::defense() const

{

return 0.0;

double Armor::damage () const

{

return 0.0;

double Armor::defense() const

{

return def;

double Sword::damage() const

{

return factor * Weapon::damage ();

}

double Shield::damage() const
{

return dmg;

}

double Shield::defense() const
{

return factor * Armor::defense();

This will work fine but it will quickly get complicated if we add more types of items. Also
notice that Shield: :damage and Weapon: :damage have exactly the same implementation.
Of course, it is fine in this case since they are only one-liners, but imagine we make them
more complicated...

One way to solve this code-duplication problem is to use multiple inheritance:




TDDD38 - Advanced programming in C++ Mixins

Item

+ damage() : double
+ defense() : double

Weapon Armor
+ dmg : double + def : double
+ damage() : double + damage() : double
+ defense() : double + defense() : double
Sword Shield

+ factor : double

+ name : std::string 1 B G

T — + defense() : double

However this introduces the diamond problem since Shield now inherits twice from Item:
once through Weapon and once through Armor. This would force us to introduce virtual
inheritance which makes the code a lot slower.

Both of these options work, but one can imagine more complicated situations where the
flaws of these two designs gets more troublesome.

2 The exercise

Instead of implementing the design(s) described above, you should solve this problem with
MITINS.

The idea is as follows:

Create a class called Item_Base which has two pure-virtual functions damage() and
defense().

Create a variadic class template called ITtem that takes multiple components. Ttem should
inherit from Item_Base and all the template parameters (i.e. inherit from all components).

Create five components (classes without a base class):

Attack A class with data member dmg and a function damage that returns dmg (you can
add whichever parameters you choose).

Defend A class with data member def and a function defense that returns def (you
can add whichever parameters you choose).



TDDD38 - Advanced programming in C++ Mixins

Damage_ Multiplier A class with data member factor and a function damage that
takes in the current damage and returns the factor multiplied with the current
damage.

Defense_ Multiplier A class with data member factor and a function defense that
takes in the current defense and returns the factor multiplied with the current
defense.

Named A class that contains a public data member name that is a std: :string.

These are the components we will add to the Item to create our different versions of the
items. Le.

using Weapon = Item<Attack>;

Item<Defend>;

Item<Defend, Attack, Defense_Multiplier >;
Item<Named, Attack, Damage_Multiplier >;

using Armor
using Shield
using Sword

In order for this to work properly Item must override damage () and defense() with the
following implementations:

1. Create a variable total that keeps track of the curret damage or defense points.

2. Go through each component and call corresponding damage (or defense) function.
Pass in total as a parameter and store the return value into total.

3. Return total.

Note: Not all components have a damage or defense function, so you should only call
them from those components that have them. As a hint, create a function:

template <typename T>
double damage_helper (T const* obj, double total)
{

return obj->damage (total);

}

That returns 0.0 if obj doesn’t have a damage function (you might have to modify the
parameters).

In item.cc there are a few testcases.




