
TDDD38 - Advanced programming in C++ Function Templates exercises

1 Reduce

In reduce.cc there is a program given which uses a function template called reduce.
Reduce is a common operation in functional programming which takes a sequence of values
and reduces them to a single value by repeatedly applying some binary operator.

Example: Given the sequence 1,2,3,4,5 and the operator + we get 1+2+3+4+5 = 15.

Reduce should take three parameters:

• a reference to an array of arbitrary size and type,

• an initial value, which should be default initialized if no value is passed by the caller,

• a function pointer to a function which takes two const references to some arbitrary
type, and return a single value of the same type. If the caller omits this parameter
it should default to addition.

Note: you will have to implement a function template which represents this default
behaviour.

reduce should first apply the function on the initial value and the first element in the
array, then apply the operator on the result and the second element in the array, and so
on.

In this exercise you are to implement this reduce function template such that the given
code compiles and produces the following output:

15

3.1415

120

hello world

2 Factorial

In this exercise you are to implement the function template factorial such that the
program given in factorial.cc compiles and produces the following output:

1

1

120

2432902008176640000

Note that the factorial function takes no argument, only a template parameter. This
allows the compiler to know a lot of things about your function call that it wouldn’t
normally be able to know, since the compiler know all values that this function is called
with. The compiler might even perform the entire calculation during compile-time.

Restriction: Try to solve this exercise without any if-statements.

Note: The value of 20! does not fit in a regular int, use unsigned long long instead.

1



TDDD38 - Advanced programming in C++ Function Templates exercises

3 Serialization

When dealing with sending and receiving data to and from various sources it is important
to keep the data in such a structure that both ends of the communication can understand it.
The process of transforming your data to and from this kind of format is called serialization.

In the file serialization.cc basic facilities for serializing to and from a stream has been
implemented in the function templates write and read. There is also a struct Product

given, and an operator<< which allows the user to print Product in a human-readable way
to a stream (note however that this operator<< should not be used during serialization).

Your job in this exercise is to extend the read and write functionality so that it works for
the Product struct, and for std::string of arbitrary length.

You should also add overloads of read and write for the type std::string. They should
be able to handle any type of string that contains any combination of letters, digits and
whitespace.

Hint: Write your strings as #my string here# when serializing, that way you can use
ignore and getline to find the string between the two #.

The Product overload should only use read and write to serialize its respective data
members, you should not have to manually perform any stream operations when serializing
Product.

2


