TDDD38 - Advanced programming in C++ Calculator

1 Introduction

This is an exercise in object-oriented programming and polymorphism. This exercise covers
the following topics:

e classes and class design

e special member functions
e move-semantics

e inheritance

e virtual functions

e dynamic_cast

e typeid

e pointers

new and delete

This is quite a large exercise loosely based on a lab given in the course TDDC76 here at
LiU. There are several purposes of this exercise; the first is to present you with a bit more
challenging and hopefully fun exercise. The second reason is to demonstrate “real” object-
oriented programming, and the third reason is to give you some (albeit minor) insight into
how a compiler might go about parsing and handling expressions.

There are three parts in this exercise, each increasing in difficulty. I strongly recommend
that you at least solve part a and part b.

Correct memory management is very important in this lab. Read section 3 for some tips
on how to check your memory correctness using valgrind.

2 Calculator

In this exercise you will implement the engine of a simple calculator. The engine is rep-
resented as an Abstract Syntax Tree where each node either represents a number or some
operator, henceforth called Ezpression Tree.

Example The expression 1+2*3 will be represented as:

Example The expression (1+2)*(3+4) will be represented as:

TDDD38 - Advanced programming in C++ Calculator

OBNO

This type of tree representation doesn’t need to keep track of any parenthesis since the
evaluation order is specified by the tree. Notice that whenever * or / has a child which is
either a + or a - there where parenthesis around that subtree in the original expression.
More generally speaking, if an operator has a child node with higher precedence, it is the
same as parenthesising the subtree.

There are 2 distinct categories of nodes:

Numbers Represent a single number, when evaluated this will simply return the number
it represents.

Operators Correspond to one of the following operators: +, -, * and /. Must keep track
of what subtrees are to the left and to the right of the operator. These subtrees
should be represented as pointers to other nodes. When evaluated this node should
recursively evaluate the left and right subtree, and then pass the resulting values into
the operator.

There is a lot of given code for this exercise. A main program which parses the command-
line arguments and calls appropriate functions is given in Calculator.cc. The program
which turns a string containing an expression into a expression tree is given in Parser.h
and Parser.cc. None of these files should require you to modify them in any way.

The file Expression.h contains the class Expression which represents a full expression
tree. All of its member functions should be implemented in Expression.cc.

a) The Expression Tree

Things covered in this part:
e Classes
e Inheritance
e Polymorphic types
e Virtual functions
e Streams

This first part of this exercise will have you implement a class hierarchy to represent an
expression tree. Each type of node should be implemented as a class with (at least) three
virtual functions:

TDDD38 - Advanced programming in C++ Calculator

evaluate A function which calculates the value of the tree stored in this node. If this
function is called on a number, it should return its value. If it is called on an
operator, each subtree should be evaluated and then the operator should be applied
to the values of the left and right subtree. This function should be overloaded for
numbers and each operator.

print_tree What would be the point of us implementing a fancy expression tree if we
can’t look at it in all of its glory? This function should print the expression tree
into the terminal. Do note that it should not be printed top-to-bottom, but instead
left-to-right (of course, you are free to print it however you choose, but left-to-right
is a lot easier than top-to-bottom).

Example The expression tree of (1+2)*(3+4) should be printed as:

print_tree should take two parameters, a std: : ostream& which contains a reference
to the stream the tree should be printed to, and an int which represents how many
spaces of indentation the current subtree should be printed as. The int should have
the default value of 0.

Hint To create indentation, use the std: :setw function defined in <iomanip>.

clone This function should return a deep copy of the subtree stored in this node. Since
trees are highly recursive structures, it is recommended to implement this function
recursively.

To complete part (a) of this exercises you need to implement the following class hierarchy
in Node.h and Node.cc:

TDDD38 - Advanced programming in C++ Calculator

Node

+ evaluate() : double
+ print_tree(ostreamé, int) : void
+ clone() : Node*

‘T

Number Operator

left : Node*

- value : double 4 right : Node*

+ evaluate() : double
+ print_ tree(ostream&, int) : void
+ clone() : Node*

+ evaluate() : double
+ print_ tree(ostream&, int) : void
+ clone() : Node*

E

Addition Multiplication

+ evaluate() : double + evaluate() : double
+ print_ tree(ostreamé&, int) : void + print_ tree(ostream&, int) : void
+ clone() : Node* + clone() : Node*

Subtraction Division
+ evaluate() : double + evaluate() : double
+ print_ tree(ostream&, int) : void + print_tree(ostream&, int) : void
+ clone() : Node* + clone() : Node*

To compile your program you must compile all available . cc files. If you have Make available
(should be available if you are on Linux), then you can run make in the directory which
contains all the files to automatically compile the entire program.

The compiled program have several command-line arguments available. In this part you
will only implement the --print-tree feature. There is a --help command if you want
to see what other arguments there are. If you simply want to evaluate the expression, no
arguments should be passed.

The program will start with a prompt; here you can enter any mathematical expression,
and the program will either calculate its value, or print a tree (depending on the given
command-line arguments). Some suitable tests are the following expressions:

1+1 (1-2)%3 1/2%3 (1+2)/(3-4)*-1 1.5/1.5%3.1415
If you get tired of entering these expressions every time, you can run the following command
to directly pass in an expression into the program:

$ echo "1+1" | ./calc

TDDD38 - Advanced programming in C++ Calculator

b) Turning trees into expressions

Things covered in this part:
e RTTI
e dynamic_cast

In this part you are to add functionality which converts your expression tree into an textual
expression and print it to the terminal. To do this, you should add a virtual function
void print(std::ostream& os) to the Node hierarchy. The expression this function print
should be correctly parenthesized, and be equivalent to the expression entered by the user
(the only difference being that any reduntant parenthesis have been remove).

e Number: :print should simply print the number;

e the print function of each operator should print the left subtree, the operator and
then the right subtree. If the current operator is multiplication or division and one of
its subtrees is either addition or subtraction, that subtree should be parenthesized.

The function Expression: :print, implemented in Expression.cc should be rewritten so
that it uses the newly implemented print function to print root.

To check if a Node is a Addition or Subtraction it is enough to check if the dynamic type
is compatible with Addition, since Subtraction is derived from Addition.

Hint: Think closely where and how you should implement the print function in such a
way that it minimizes code repetition.

Use the --print-expression flag in the program to test this part of the exercise.

c) Expanding parenthesis

Warning: This part is very hard and does in no way reflect the difficulty level of the exam.
This exercises will serve as a challenge and/or an example of a real world application of
C++. You can safely skip this exercise if you find it to difficult. But I do recommend that
you at least look at the reference solution.

The distributive laws in mathematics states that (a +b)c = ac+ be and a(b+c¢) = ab+ ac.
In this exercise we will implement a feature which applies these laws to our expression tree.

We can note that these laws can be represented as operations on our tree, where we
restructure the tree and add new nodes. There is one operation for each version of the law
(one left and one right):

TDDD38 - Advanced programming in C++ Calculator

(A+B)xC=AxC+BxC

© o
@:)q:» o
OBRG OBROINOMRG

Ax(B+C)=AxB+AxC

These operations does not operate in a vacuum. We do not know what A, B or C is. They
might be numbers, or they might be some other complicated expressions. Therefore we
should first, before we apply our transformation, recursively tranform each subtree. After
that, one of the two transformations above can be applied to our current tree.

However, there is a catch. If we transform our tree and the root node of either A, B or C
is an addition or subtraction, we have to transform our current node again.

The algorithm is as follows (given in C++-like pseudo-code):

Node* Operator::expand()

{
lhs = lhs->expand ();
rhs = rhs->expand();
if (this is exactly Multiplication)
{
if (lhs is Addition or Subtraction)
{
auto current = left_expand(this);
return current->expand();
}
else if (rhs is Addition or Subtraction)
{
auto current = right_expand(this);
return current->expand();
}
}
return this;
}

TDDD38 - Advanced programming in C++ Calculator

Number: : expand () will simply return this.

Your job is to translate the above pseudo-code into real, working C++. You should also
implement Operator: :left_expand and Operator: :right_expand as static members of
Operator which performs the tree transformations specified in the graphs above. These
functions should return a pointer to the root node after the transformation.

You will have to rewrite Expression: : expand such that root = root->expand().

Hint: You only need to allocate one new Multiplication for each transformation, nothing
else.

To test your program, you can run echo "(1+2)*(3+4)" | ./calc -e -p and check that
your output is 1*3+1%4+2*3+2%4. Of course, you will have to try expressions with nested
parenthesis, but its a good start.

3 Memory Management

In this exercise it is important to manage your dynamic memory correctly. You should
avoid any and all memory leaks. On Linux there is a tool called valgrind which can check
wheter or not you have any memory leaks. To run it on your program:

$ valgrind --leak-check=full ./calc

This will run your program, but at an extremely slow rate. Enter some complicated
expression, and you will after a while see something like this:

LEAK SUMMARY:
definitely lost: O bytes in O blocks
indirectly lost: O bytes in O blocks
possibly lost: O bytes in O blocks
still reachable: 72,704 bytes in 1 blocks

If you see that definitely lost, indirectly lost and possibly lost all are 0, then
you have no memory leaks. Everything else would probably be a memory leak, so you
should check that all your allocated memory (new) is deallocated (delete).

The easiest way to guarantee correct memory usage is to rewrite the entire program such
that it uses std::unique_ptr instead. If you find that you have a hard time fixing your
memory leaks, this might be a viable option.

