
Advanced Programming in C++
The Curiously Recurring Template Pattern (CRTP)

This exercise is a follow-up on the P-E-M-C example used for lecture 6-7, and the polymorphic cloning 
pattern used to copy objects. 

The Cloning Pattern
The cloning pattern is simple, as shown in code example P-E-M-C (lecture 6–7). A virtual function, 
typically named clone() and pure, is declared in the topmost base class (Person), and then overridden in 
every concrete subclass. clone() shall dynamically create a new object of the type in question, by using 
the copy constructor, and return a pointer to the new object. The type of the returned pointer can be either 
a pointer to the topmost base class or of the class in question, such pointer types are covariant. 

class Person 
{
public:

virtual Base* clone() const = 0; 
… 

};

class Employee : public Person 
{ 
public: 

virtual Derived* clone() const override { return new Derived{*this}; }
…

};

class Manager : public Employee 
{ 
public: 

virtual Manager* clone() const override { return new Manager{*this}; }
…

};

If clone() is to be the only public way to copy objects, the copy constructor should be protected, and the 
copy assignment operator should be deleted. 

One problem is that you must remember to override clone() in every concrete subclass. If you forget to 
do that in Manager, clone() in Employee will be inherited and cloning a Manager will instead give you 
an Employee, initialized with the Employee part of the Manager object. 

The Curiously Recurring Template Pattern (CRTP)
This pattern have been noticed to occur now and then in templates, and is regarded as a C++ design 
pattern. The pattern is a template class having a template type parameter derives from that type.

class Derived : public Base<Derived> { … };

Derived could also be a template. CRTP is powerful because of the way template instantiation works in 
C++. Declarations in the base class are instantiated when the derived class is declared (or instantiated if 
the base class is a template), but bodies of member functions in the base class are instantiated first after 
the complete declaration of the derived class is known to the compiler. Therefore the member functions 
in the base class can use details from the derived class.
1



Step 1
Keep class Person as it is given in the lecture example. 

• Derive a class template class named Person_Cloneable from Person, having one template type 
parameter named Derived. 

• Override clone() to dynamically create a Derived object, initialize it with a copy of *this, and return a 
pointer to the new object as Person*.

this has type const Person_Cloneable* const in clone(), but we need to pass a Derived to the Derived 
copy constructor call in the new expression. This is solved with an ordinary type conversion, but be 
sure to get the details correct! 

A typical choice for the return type of clone() would be Derived*, but that’s not possible here, why? 

• Modify Employee, given in the lecture example, to derive from Person_Cloneable instead of Person. 
CRTP is used to inject clone(), defined in Person_Cloneable, into Employee.

Test, correct any errors, and then have a look at the given solution.

Step 2
Manager is now to be derived from Employee. In the lecture example this is straight forward:

class Manager : public Employee { … };

We now discover that our experiment with CRTP in Step 1 works only for one-level inheritance: 

class Manager : public Person_Cloneable< What? > { … };

What? should be Employee, but CRTP require Manager. To get around this, let Person_Cloneable have 
two template type parameters, one for the direct base class, one for the class to be derived.

• Redefine Person_Cloneable to have two template type parameter, named Base and Derived.

• Modify Manager given in the lecture example, to derive from Person_Cloneable<Employee, 
Manager> instead of Employee.

If we compile at this stage, we will run into problems with constructors. All subclasses will derive from 
Person_Cloneable, but Person_Cloneable will derive from different base classes, with different 
constructors. In the Employee case Person_Cloneable will derive from Person, in the Manager case from 
Employee and these have different constructors, especially the public ones.

• Fortunately constructors can be inherited in C++11, so remove the explicitly declared public 
constructor in Person_Cloneable, and instead declare Person_Cloneable to inherit constructors from 
its direct base class.

Step 3
Modify Consultant.
2


	Advanced Programming in C++
	The Curiously Recurring Template Pattern (CRTP)
	The Cloning Pattern
	The Curiously Recurring Template Pattern (CRTP)
	Step 1
	Step 2
	Step 3



