TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

These exercises are mostly theoretical in nature. Some of them requires you to do some
research on your own, since not everything is covered during the seminars.

1. Given the following function overloads:

1 void fun(double, int, int); // #1
2 void fun(int, int, double); // #2
3 void fun(double, int, double); // #3

For these function calls, determine which — if any — of the overloads above is called:

1+ fun(0.0, 0.0, 0.0); // a
> fun(0, 0, 0); // Db
3 fun(0, 0.0, 0.0f); // c
4 fun(0.0, 0.0, 0); // 4d
5 fun(0.0, 0, 0.0f); // e

Explain for each of them why the overload is called or why it failed.



TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

Answer 1

a Calls #3.
Overload #1 requires two conversion (second and third to int).
Overload #2 requires two conversions (first and second to int).
Overload #3 requires one conversion (second to int).
The third call requires the fewest conversions.

b None, the call is ambiguous.
Overload #1 requires one conversion (first to double).
Overload #2 requires one conversion (third to double).
Overload #3 requires two conversions (first and third to double).
The fewest required conversions is one, but two overloads has that so
none can be picked.

c Calls #2.
Overload #1 requires three conversions (first to double, second and third
to int).
Overload #2 requires two conversions (second to int and third to float).
Overload #3 requires three conversions (second to int, first and third
to double).
#2 requires the fewest conversions.

d Calls #1.
Overload #1 requires one conversion (second to int).
Overload #2 requires three conversions (first and second to int and third
to double).
Overload #3 requires two conversions (second to int and third to
double).
#1 requires the fewest conversions.

e Calls #3.
Overload #3 matches exactly, and every other overload requires at least
one conversion.

2. Explain all type conversions that occur in this example.

#include <iostream>
#include <string>

1
2
3
4 int sum(double const* numbers,
5 unsigned long long size)
6 {

7 double result{};

8 for (unsigned i{}; i < size; ++i)

9 result += static_cast<int>(numbers([i]);
10 return result;

11}

12

13 int main ()

12 {




TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

15 std::string message{};
16 message = "Enter a number: ";
17
18 double numbers [3];
19 for (int i{0}; i < 3; ++i)
20 {
21 std::cout << message;
2 if (! (std::cin >> numbers[i]))
23 return true;
24 }
25
26 std::cout << sum(numbers, 3) + 1.0 << std::endl;
27 }
Answer 2

line 8: Comparisons can only be performed with compatible types, so i is
promoted to unsigned long long so that it can be compared with size.

line 10: With static_cast we are casting numbers[i] to an int and then
adding the value to result. But result is of type double, which has
higher accuracy than int, so the casted value is then converted to an
double. So we did a floating-to-integer followed by an integer-to-floating
conversion.

line 12: sum returns an int, but we are returning result which is of type
double. Due to this the compiler has to do a floating-to-integer cast.

line 18: "Enter a number: " is a C-string literal, i.e. of type char const*
so one might think this would lead to a conversion, but std::string
has an overload of operator= that handles char const* so it is actually
not a conversion.

line 24: std::cin >> numbers[i] returns std::cin (an std::istream)
which is the negated using the ! operator, which triggers a conversion
from std::istream to bool.

line 26: main returns an int, so true will be casted to the value 1.

line 30: sum returns an int that is added to the double value 1.0. Since we
are adding int and double we have to convert them to the same type.
The compiler will do a integer-to-floating conversion on the int which
means that the result of the addition will be a double.

line 30: numbers is an array of doubles with size 3. However it is passed in
to sum which takes a double const*. The compiler will first perform
an array-to-pointer conversion to convert numbers into doublex. How-
ever it doesn’t stop there, the compiler will also perform a qualification
conversion to add const.

line 30: The literal 3 is an int, but the second parameter of sum is of type
unsigned long long, so 3 will be promoted to unsigned long long.

3. Why do you think it is well-defined behaviour what happens when an unsigned



TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

integer value under- or overflows?
Why is the same not true for signed integer values?

I.e. why is the C++ standard comfortable with defining what happens if you subtract
one from the smallest, or add one to the largest, possible unsigned value but not for
signed?

Answer 3
An unsigned integer type directly interprets its bits as base two numbers.
Note that, in base 2 it holds that:

111...111+1=1000...000
—_—— —
N N

so if there are IV bits in a value, the left-most 1 would be lost.
Similarily it can be seen that:

0—-1=111...111.
S —
N

The same cannot be said for signed integers since the representation of nega-
tive numbers might be different on different platforms.
For example: in two’s complement, the largest (most positive) value is given
by
0111...111(=2V"1 —1).
N

Adding one to this value gives

1000. .. 000,
—_—
N

which happens to be the most negative value (= 02V—1).

Using a sign bit will result in the same largest number, but the result of adding
one is instead interpreted as —0.

So depending on representation overflow is interpreted differently (which is
also true for underflow).

4. Study the code below:

#include <cstdlib> // for std::abort ()
#include <iostream>

1
2

3

4 int main ()

s {

6 std::cout << "Hello ";

7 std::abort ();

8 std::cout << "there!" << std::endl;
9




TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

(a) Explain why the code (likely) DOESN’T print Hello to the terminal, even
though the program isn’t aborted until after the output statement.

(b) How do you fix this program (without removing any code and without changing
the intended behaviour of the program) so that it prints Hello before it crashes?

Hint: There are at least two fundamentally different ways of fixing this.

Answer 4

(a) std::cout is buffered, which means it doesn’t actually print anything
to the terminal until it is flushed.
What (likely) happens is that the contents of the buffer isn’t flushed un-
less the line is completed (by inserting std: :endl or potentially ’\n’),
or until std: :flush is used.
Since none of these conditions are met for the first print statement,
Hello is never actually printed to the terminal.
Note: Strictly speaking the standard doesn’t stop any implementation
(compiler) from flushing after every printed character, but if your com-
piler does that you should change compiler since that is a HUGE hit on
performance.

(b) The first solution is to simply use std: :flush:

#include <cstdlib> // for std::abort ()
#include <iostream>

1
2

3

4 dint main ()

5 {

6 std::cout << "Hello " << std::flush;
7 std::abort ();

8 std::cout << "there!" << std::endl;
9

}

The second solution is to use the unbuffered stream std: :cerr:

1 #include <cstdlib> // for std::abort ()

2 #include <iostream>

3

4 int main ()

5 {

6 std::cerr << "Hello ";

7 std::abort ();

8 std::cerr << "there!" << std::endl;
o }

This is a worse solution though in terms of performance. An unbuffered
stream is one that is guaranteed to flush after each individual printed
value.




