
TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

1 Basic language constructs
The exercises here are (mostly) more theoretical in nature. Do note that some of these
questions requires you to do some research on your own, since not everything is covered
during the seminars.

1. Given

int n{};

int& foo(int& n)
{

return n;
}

int bar(int& n)
{

return n;
}

int && move(int& n)
{

return static_cast <int &&>(n);
}

what is the value category of the following expression:

(a) n

(b) n + 1

(c) n = 2

(d) double{}

(e) move(n)

(f) foo(n)

(g) bar(n)

(h) foo(n = bar(n))

1

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

2. Write declarations for the following variables:

(a) a pointer to char

(b) an array with 10 int

(c) a pointer to an array with 3 elements of type std::string

(d) a pointer to a pointer to char

(e) a constant int

(f) a pointer to a constant int

(g) a constant pointer to an int

3. Write a program that initializes all the variables from exercise 2.

4. For each of the following declarations: is it legal? If it is, what does it declare? The
last three can be skipped since they are very complex.

(a) int a(int i);

(b) int a(int);

(c) int a(int (i));

(d) int a(int (*i)());

(e) int a(int* const);

(f) int a const();

(g) int a(int const* (*)());

(h) int a(int (*)(int));

(i) int a(int (*i)(int)[10]);

(j) int a(int (*i[10])());

(k) int a(int (&(*i)())[10]);

Note: Please, please, PLEASE don’t ever do these kinds of declarations! Let this
exercise serve as a demonstration as to what might happen if you don’t think about
readability. See next exercise for how you can make it more readable.

5. What does the following mean? How can it be used?

using x = int (&)(int , int);

6. What size does the character array msg have? What length does the C-string
"Hello world!" have?

char msg [] { " Hello world !" };

2

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

7. Which of these are valid variable initializations? For those that are valid, what are
their values? For those that are invalid explain why.

• int i1{};

• int i2(2);

• int i3 = 1;

• int i4 = {};

• int i5();

• std::string str1{};

• std::string str2("hello");

• std::string str4(3, ’a’);

• std::string str5 = str2;

• float f1{5.37e100};

• float f2 = 5.37e100;

• float f3{1738335806};

8. Explain all type conversions that occur in this example.

1 # include <iostream >
2 # include <string >
3

4 int sum(double const * numbers ,
5 unsigned long long size)
6 {
7 double result {};
8 for (unsigned i{}; i < size; ++i)
9 {

10 result += static_cast <int >(numbers [i]);
11 }
12 return result ;
13 }
14

15 int main ()
16 {
17 std :: string message {};
18 message = " Enter a number : ";
19

20 double numbers [3];
21 for (int i{0}; i < 3; ++i)
22 {
23 std :: cout << message ;
24 if (!(std :: cin >> numbers [i]))
25 {

3

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

26 return true;
27 }
28 }
29

30 std :: cout << sum(numbers , 3) + 1.0 << std :: endl;
31 }

9. Explain all conversions in the following example. Why do they occur?

1 # include <iostream >
2 int foo ()
3 {
4 return 0;
5 }
6

7 using function_t = int (*)();
8

9 int main ()
10 {
11 function_t f {main };
12

13 char c{’A’};
14 std :: cout << c + 1 << std :: endl;
15 std :: cout << c + ’A’ << std :: endl;
16

17 std :: cout << 0 - 1u << std :: endl;
18

19 f = foo;
20 std :: cout << f() << std :: endl;
21 std :: cout << f << std :: endl;
22 std :: cout << reinterpret_cast <void *>(f) << std :: endl;
23 }

4

