TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

1 Basic language constructs

The exercises here are (mostly) more theoretical in nature. Do note that some of these
questions requires you to do some research on your own, since not everything is covered
during the seminars.

1. Given

int n{};

int& foo(int& n)
{

return n;

3

int bar(int& n)
{

return n;

int&& move (int& n)

{

return static_cast<int&&>(n);

what is the value category of the following expression:

(a) n
(b
(c

(d) double{}

n

(f) foo(n)

(g) bar(n)
(h

foo(n = bar(n))

) n
)
)
(e) move(n)
)
)
)

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

Answer 1

lvalue
prvalue
lvalue

T ®

prvalue
xvalue
lvalue
prvalue
lvalue

A/\ o
=00 G O &
NP AN AN INEP AN NN

2. Write declarations for the following variables:
(a) a pointer to char
(b) an array with 10 int

(c) a pointer to an array with 3 elements of type std: :string

a constant int

(e

)
)
(d) a pointer to a pointer to char
)
(f) a pointer to a constant int

)

(g) a constant pointer to an int

Answer 2

—~
&

charx ptr;

int array[10];
std::string (*array) [3];
charx* ptr;

int const n;

int const* ptr;

int* const ptr;

N~
Qo T
NN NN N

—
— @

—~~
o

3. Write a program that initializes all the variables from exercise 2.

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

Answer 3

#include <string>
int main ()
{
std::string words[3]{"hello", "world", "!"};

char* ptr{new char{’A’}};

int array[10]{1};

std::string (*words_ptr) [3]{&words};
char** ptr_ptr{&ptr};

int const n{1};

int comnst* cptri{&n};

int* const cptr2{&array[0]};

4. For each of the following declarations: is it legal? If it is, what does it declare? The
last three can be skipped since they are very complex.

(a) int a(int i);

int a(int);

int a(int (i));
int a(int (*i)());

int a(int* const);

)
)
)
)

(f) int a const();
) int a(int const* (*)());
) int a(int (%) (int));

) int a(int (i) (int)[101);
) int a(int (*i[101)O));
(k) int a(int (&(*i) O)[101);

Note: Please, please, PLEASE don’t ever do these kinds of declarations! Let this
exercise serve as a demonstration as to what might happen if you don’t think about
readability. See next exercise for how you can make it more readable.

TDDD38 - Advanced programming in C++

Answer 4

Valid. A function with a named int parameter that returns an int.
Valid. A function with an int parameter (name omitted) that returns
an int.

Valid. A function with a named int parameter that returns an int,
with reduntant parenthesis around the parameter name (identifier).
Valid. A function returning int that has an argument which is a pointer
to a function returning int with no parameters.

Valid. A function returning int that takes a constant pointer to an int
as a parameter.

Mlegal.

Valid. A function returning int that takes a (unnamed) parameter that
is a pointer to a function with no arguments that return a pointer to a
constant int.

Valid. A function returning int, that takes a pointer to a function with
one int parameter and that returns an int.

Illegal.

Valid. A function returning int, that takes an array of 10 pointers to
functions taking no parameters and returning int.

Valid. A function returning int, that takes a pointer to a function with
no arguments that return a reference to an array of 10 int.

5. What does the following mean? How can it be used?

using x = int (&) (int, int);

Answer 5
x is a reference to a function taking two ints and returning an int.
It can be used as this:

int add(int a, int b)
{
return a + b;
}
using x = int (&) (int, int);
int main ()
{
x my_fun {add};
return my_fun (1, 2); // will call add(1l, 2)
}

6. What size does the character array msg have?

"Hello world!" have?

Mixed Excercises with Answers

What length does the C-string

TDDD38 - Advanced programming in C++

Mixed Excercises with Answers

char msgl[] { "Hello world!"

+;

Answer 6

It has the size 13 since it is initialized from a C-string which must contain a
’\0’ as the last element. The string itself has length 12.

7. Which of these are valid variable initializations? For those that are valid, what are
their values? For those that are invalid explain why.

e int i14{};

int
int
int
int
std
std
std

std

i2(2);

i3 = 1;

i4 = {};

i50;

::string stri{};
::string str2("hello");
::string str4(3, ’a’);

::string strb = str2;

float £1{5.37e100};

float £2 = 5.37e100;

float £3{1738335806};

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

Answer 7

Valid. The value is 0.

Valid. The value is 2.

Valid. The value is 1.

Valid. The value is 0.

Invalid, because most vexing parse forces the compiler to interpret this
as a declaration of a function returning int with no parameters.

Valid. The value is "".

Valid. The value is "hello".

Valid. The value is "aaa".

Valid. The value is "hello".

Invalid because brace-initialization checks for narrowing conversions and
since 5.37e100 is a double which has higher accuracy than float forc-
ing a narrowing conversion.

Valid (copy initialization does not check for narrowing conversions). The
value is undefined since float cannot accurately represent 5.37e100,
but it is probably inf.

Invalid, float cannot accurately represent 1738335806 which would
lead to narrowing conversion.

8. Explain all type conversions that occur in this example.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

#include <iostream>
#include <string>

int sum(double const* numbers,
unsigned long long size)

{

double result{};
for (unsigned i{}; i < size; ++1i)
{
result += static_cast<int>(numbers[i]);
}

return result;

int main ()

{

std::string message{};
message = "Enter a number: ";

double numbers [3];
for (int i{0}; i < 3; ++i)
{
std::cout << message;
if (! (std::cin >> numbers[i]))

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

25 {
26 return true;
27 }
28 }
29
30 std::cout << sum(numbers, 3) + 1.0 << std::endl;
31 }
Answer 8

line 8: Comparisons can only be performed with compatible types, so i is
promoted to unsigned long long so that it can be compared with size.

line 10: With static_cast we are casting numbers[i] to an int and then
adding the value to result. But result is of type double, which has
higher accuracy than int, so the casted value is then converted to an
double. So we did a floating-to-integer followed by an integer-to-floating
conversion.

line 12: sum returns an int, but we are returning result which is of type
double. Due to this the compiler has to do a floating-to-integer cast.

line 18: "Enter a number: " is a C-string literal, i.e. of type char const*
so one might think this would lead to a conversion, but std: :string
has an overload of operator= that handles char const* so it is actually
not a conversion.

line 26: main returns an int, so true will be casted to the value 1.

line 30: sum returns an int that is added to the double value 1.0. Since we
are adding int and double we have to convert them to the same type.
The compiler will do a integer-to-floating conversion on the int which
means that the result of the addition will be a double.

line 30: numbers is an array of doubles with size 3. However it is passed in
to sum which takes a double const*. The compiler will first perform
an array-to-pointer conversion to convert numbers into doublex. How-
ever it doesn’t stop there, the compiler will also perform a qualification
conversion to add const.

line 30: The literal 3 is an int, but the second parameter of sum is of type
unsigned long long, so 3 will be promoted to unsigned long long.

\. .

9. Explain all conversions in the following example. Why do they occur?

#include <iostream>
int foo ()
{

return O;

}

using function_t = int (*)();

© 00 N o o b W N e

int main ()

TDDD38 - Advanced programming in C++

Mixed Excercises with Answers

10
11
12
13
14
15
16
17
18
i
20
21
22
23

function_t f

char c{’A’};

std

std:

std:

Hh
]

std:
std:
std:

::cout
:cout

:cout

foo;

:cout
:cout
:cout

<<
<<

<<

<<

<<
<<

{main};

c + 1 << std::endl;

c + A’ << std::endl;
0 - 1u << std::endl;
f() << std::endl;

f << std::endl;
reinterpret_cast<void*>(f) << std::endl;

TDDD38 - Advanced programming in C++ Mixed Excercises with Answers

Answer 9

line 11 main is a function, while function_t represents a function-pointer,
so the compiler must perform a function-to-pointer.
line 14 we add a char and an int, therefore the compiler must promote the
char to an int so that the result of the addition doesn’t run the risk of
overflowing.
line 15 When performing arithmetic operations on types smaller than int,
the result will be converted to an int. This is done for various reasons:
e Speed: int represents the type for which we get the most effective
arithmetic operations in the CPU
o Safety: a type smaller than int can overflow easily since there are
few values, so to make sure that it doesn’t overflow we represent it
as an int instead
o Consistency: make sure that arithmetic expressions are performed
in a similar way each type
e Composability: if we have larger arithmetic expressions we want
everything to work together without having to manually convert
subexpressions. Example: 3¥4 + 6u * (’A’+ ’B’);
line 17 We are performing an arithmetic operation on an int and an
unsigned. unsigned has higher accuracy (in the positive values), so
the int is converted to unsigned forcing the entire addition to produce
an unsigned. This will cause an underflow, making the value wrap-
around to the largest possible value of type unsigned.
line 19 Again, f is a function-pointer while foo is a function, so the compiler
must perform a function-to-pointer conversion.
line 21 operator<< for streams doesn’t have an overload for function-
pointers, so the function-pointer will be converted to bool through
NATrToOWINg-CONVETSLoN.
line 22 The function-pointer f points to some address, which we can reinter-
pret cast as a data-pointer instead of a function-pointer. This way we
can actually print where in memory f is pointing to, since streams can
print data-pointers.

