
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2020-01-13

Computer examination in
TDDD38 Advanced Programming in C++

Date 2020-01-13

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory given_files (write protected). The exam will be

available as a pdf in this directory at the start of the exam.
• Files for examination must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.



TDDD38 Page 2 of 7 2020-01-13

Available commands
e++17 is used to compile with “all” warnings as errors.
w++17 is used to compile with “all” warnings. Recommended.
g++17 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/ with the
chromium browser, specifically you will not have access to anything in the language section of
cppreference. You can start the browser by either running chromium-browser in the terminal
or choose an appropriate option in the start menu. Do note that everything except cppreference
will be unavailable. If you are unable to access a page that should be available (it might have
been blocked by mistake) then you can send a message through the exam client.



TDDD38 Page 3 of 7 2020-01-13

Theory questions
1. Answers may be given in either Swedish or English. Write all your answers in one text file

and submit as assignment 1.
(a) [1p]What problems are there in the following code?

struct X
{

X(int x) : ptr{new int{x}}
{ }

~X() { delete ptr; }

int* ptr;
};

int main()
{

X x{5};
delete x.ptr;

}

(b) [1p]What is the difference between if constexpr and if statements?
(c) [1p]Given:

class A
{
private:

class B { };
public:

B get() { return B{}; }
};

int main()
{

A a{};
// create a variable of type B here

}

show how to create a variable of type B in main without calling A::get (i.e. A::get
should not be evaulated).

(d) [1p]Give an example of an xvalue expression.
(e) [1p]What is a union? E.g. how is it different from struct?



TDDD38 Page 4 of 7 2020-01-13

Practical questions

2. [5p]Many terminal-based programs use what are known as Unix command line options. A good
example of such a program would be g++. We specify which files to compile and which flags
to use when calling the program, as such: g++ -Wall program.cc, which is a very typical
usage of command-line options.
In this assignment you are going to implement a very simple framework for dealing with
such options. In this framework flags has to occur in a specific order. We will only deal
with two types of options: flags (options that start with -) and value arguments (options
that takes a value).
In the example above -Wall is a flag and program.cc is a value argument that takes a
string.
This framework will be implemented with polymorphism. There is an example program
given in given_files/program2.cc. This program implements some features of this frame-
work, so your job is write the classes. Make sure to read the comments in the given file.
You have to create these four classes:

Option Base class for all types of options. Stores a name (as std::string) of the option
that will be shown during error message. This name is set by passing its value to the
constructor. Option has two virtual functions:
bool parse(std::string const& arg) and void print(std::ostream& os).
parse will take a single argument from the command-line and return true if this
option could parse the passed in argument, otherwise it returns false. In Option,
parse doesn’t have an implementation. print will print the name to os.

Flag represents a flag option. This class stores a reference to a bool variable that indicates
to the user that this flag was present. The constructor should set this variable to false.
Inherits from Option and overrides parse and print. parse will set the bool variable
to true and return true if the argument passed in is equal to the name of this option.
Return false otherwise. The main program can then check the bool variable to see
if this flag was present.
print will print the name of this option inside brackets [...].

Argument represents a value argument. Argument is a class template with one parameter:
T which represents the type of value it parses. This class stores a reference to a T
variable called target where we will store that parsed value.
Inherits from Option and overrides parse. parse will parse the passed in argument as
a T value and set target to this value if the parse succeeded. Returns true if a value
could be parsed, and false otherwise.
Hint: Assume that T has operator>>, this is useful for converting a string to T.

Parser a class that holds a collection (std::vector) of options called options. Should
have three functions: add, parse and print that should be possible to use as demon-
strated in the main program. Implementations for parse and print are given in
given_files/program2.cc. add should take an option and add it to the options
collection.

It should not be possible to copy any of the classes, and no memory leaks are allowed
(cleanup should be done according to good C++ conventions).



TDDD38 Page 5 of 7 2020-01-13

3. [5p]There is a program given in given_files/program3.cc that calculates the length of a
circular road, but it takes various height differences in to account as well. This circular
road has the following shape when viewed from above:

Each line segment has the same length, stored as a constant called length in the program
(expressed in meters). The road has a third dimensions as well: each vertex has its own
height (expressed in meters) above sea level. See the following diagram:

4 m

5 m
4 m6 m

7 m

4 m 8 m 6 m

The program represent this diagram by storing the height of each vertex as a double in the
vector called road. The diagram above can be represented in the program with the values
4 5 4 6 7 4 8 6.
The program will allow the user to enter heights (the number of heights will be the number
of vertices). The program will then print the distance between each successive vertices as
well as the total length.
Your assignment is to rewrite the code so that it uses only STL algorithms. The main goal is
to make the code more readable by selecting algorithms that express your intent. A full solu-
tion should not require standard iteration statements, nor should it require std::for_each.



TDDD38 Page 6 of 7 2020-01-13

4. [5p]In C++20 a new concept will be introduced called ranges. A range is a pair of iterators,
first and last that represents a range of data. The idea is to simplify code by replacing
iterators with this concept. In this assignment you will implement a prototype of ranges.
range is class template that takes one template parameter: Container, which represents
the type of container this range spans.
range must have two type-aliases (inner types):

value_type represents the type of data that is stored in the underlying container.
iterator represents the iterator type of the underlying container.

range should have the following member functions:

begin returns an iterator to the start of the range.
end returns an iterator to the end of the range.
size returns the number of elements in the range (the distance between the two iterators).
take takes one parameter: int n. Will create a new range that spans the n first elements

of the current range.
skip takes one parameter: int n. Will create a new range where we skip the n first

elements of the current range.

Note: take and skip are not supposed to modify the underlying container, they should
return a new range of iterators only.
A range is easy to use, but only if we actually write algorithms for them. Therefore you
should also implement three algorithms for the range. All of these algorithms take a refer-
ence to a range r. These algorithms are allowed to change the underlying container, but
only through iterators.

map takes a function object op and apply it to each element in the range. op takes one
parameter of type value_type and have the same return type. map returns a reference
to r.

filter takes a function object pred. pred should take one parameter of type value_type
and return bool. filter will move all elements for which pred returns true to the
end of the range and then set the last iterator of r to the first of these moved elements
(it should “remove” the values). filter returns a reference to r.

reduce takes a value_type called initial and a function object op. op takes two param-
eters of type value_type and returns a value_type. reduce will combine all elements
of r into one value with the help of op and initial (you can think of reduce as a
general sum function). reduce returns the calculated value.

Hint: try to use STL algorithms to implement these.
It is very annoying to create a range as it stands right now since you have to specify
the container-type and also pass it two iterators. Therefore you have to make a function
make_range that takes a container and returns a range to that entire container.
There are testcases given in given_files/program4.cc.



TDDD38 Page 7 of 7 2020-01-13

5. [5p]In this assignment you will create a function template call_chain that takes an arbitrary
amout of callable objects (functions, function objects and lambdas) and returns a function
object that will chain the passed in callables.
What this means is that the following:
auto f = call_chain(f1, f2, f3);
cout << f(1, 2, 3) << endl;

should be equivalent with:
cout << f3(f2(f1(1, 2, 3))) << endl;

There are more testcases given in given_files/program5.cc.
To implement this, create a class template call_chain_result that takes an arbitrary
amount of callable object types.
call_chain_result have two partial specializations:

1. A specialization that extracts the first template parameter in the given variadic pack as
its own parameter. This one should store a data member rest that is a call_chain_result
instantiated with all the callable object types, except the extracted parameter (variadic
recursion).

2. A specialization that only matches when there is only one template parameter.

Both of these specializations have a data member f which is an instance of the first template
parameter in the variadic pack.
call_chain_result defines operator() taking an arbitrary amount of parameters as for-
warding references. The behaviour of operator() varies between the two specializations:

1. calls f with the passed in parameters and then passes the result to the callable object
rest, returning the result.

2. calls f with the passed in parameters and then returns the result.

The function call_chain should return an instance of call_chain_result. This returned
object should be callable with the same number of parameters as the first passed in callable
object type and should have the same return type as the last callable object type. So for
example, given:
int first(int x, int y)
{

return x + y;
}

double last(int x)
{

return 0.5 * x;
}

The following:
auto fun = call_chain(first, last);

should result in a variable fun that can be called with two int parameters and returning a
double. I.e. fun(1, 2) should return the double value 1.5.


