
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2019-04-25

Computer examination in
TDDD38 Advanced Programming in C++

Date 2019-04-25

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory given_files (write protected). The exam will be

available as a pdf in this directory at the start of the exam.
• Files for examination must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.

TDDD38 Page 2 of 6 2019-04-25

Available commands
e++17 is used to compile with “all” warnings as errors.
w++17 is used to compile with “all” warnings. Recommended.
g++17 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/ with the
chromium browser. You can start the broweser by either running chromium-browser in the
terminal or choose an appropriate option in the start menu. Do note that everything except
cppreference will be unavailable. If you are unable to access a page that should be available (it
might have been blocked by mistake) then you can send a message through the exam client.
Since it is an experimental feature there might be some quirks.

TDDD38 Page 3 of 6 2019-04-25

Theory questions
1. Answers may be given in either Swedish or English. Write all your answers in one text file

and submit as assignment 1.
(a) [1p]Given

int&& foo(int&& x)
{

return x;
}

what is the value category of the expression foo(5)? Explain why.
(b) [1p]Give a code example of a template-template parameter.
(c) [1p]When talking about inheritance and polymorphism, what is the diamond problem?
(d) [1p]What is ADL (argument dependent lookup)?
(e) [1p]What is meant with the constexpr keyword?

TDDD38 Page 4 of 6 2019-04-25

Practical questions

2. [5p]A customer has contacted you because they want a program that takes an arbitrary text
and replaces each word with a synonym if possible. However, there is a slight problem.
The customer clearly doesn’t know what a synonym is. They believe that two words are
synonyms if they are spelled exactly the same but for one character difference. In other
words; they think that two words are synonyms if they differ at exactly one letter in their
spelling. After a short discussion you realize that the customer actually want what they
ask for.
In this assignment you are to use standard algorithms to implement the program described
above. No Hand-written loops are allowed. Usage of for_each will result in point deduc-
tions.
A skeleton for the program is given in given_files/program2.cc. The file contains a list
of “synonyms” and further instructions on how the program should be implemented.
Here are some examples you can try:

• “wash the fish” should give “cash the dish”
• “I am leasing this ring” should give “I am leading this king”
• “make films when happy” should give “jake files then happy”

3. [5p]In this assignment you are to implement a polymorphic class hierarchy that represents a
sequence of string transformations. Each class in the hierarchy contains logic for one specific
operation on a given string. Some of these operations are redundant if they occur after
another specific operation, so there should be functionality to check whether an operation
is redundant given the previous operation (the one that comes before it).
The following class hierarchy should be implemented:

...........................
Operation

..
+ apply(string) : string
+ redundant_after(Operation) : bool

.

Lowercase

..

+ apply(string) : string
+ redundant_after(Operation) : bool

.

Capitalize

..

+ apply(string) : string
+ redundant_after(Operation) : bool

.

Replace

.

- target : char
- replacement : char

.

+ apply(string) : string
+ redundant_after(Operation) : bool

....

TDDD38 Page 5 of 6 2019-04-25

There are four classes in total:

Operation base class for the various operations
Lowercase will transform each letter in the given string into lowercase letters. It is redun-

dant if it occurs directly after a Lowercase operation (note that it is NOT redundant
if it occurs after a Capitalize operation).

Capitalize will first perform the operation of the Lowercase class, and after that it will
capitalize (turn it into an upper letter) the first character in the string. It is redundant
if it occurs directly after another Capitalize operation.

Replace has a constructor that takes two parameters; target and replacement. Will
replace each occurrence of the character target with the character replacement in
the given string. It is redundant if it comes directly after another Replace operation
which shares the same target character.

Hint: The functions tolower, toupper and std::replace might be useful.
It should not be possible to copy any of these classes and Operation should not contain
any logic.
Each class should have exactly two functions:

apply Will take a string and apply the corresponding operation on it and return the re-
sulting string.

redundant_after Takes a reference to an Operation object op and returns false if this
object is redundant given that it occurs directly after op, and true otherwise.

There is a partial main program given in given_files/program3.cc. You should modify
the given code so that it works correctly with your implementation of the class hierarchy.

4. [5p]In this assignment you are to create a function template get_size that calculates the size
of a object and a variadic function template total_size that calculates the total sum of
all parameters size.
The function template get_size should take a type T as a template parameter and take an
object of type T as a parameter.

• If T is a container (i.e. it has iterators) then get_size should call get_size on each
element and return the sum.

• Otherwise, get_size should simply return the result of sizeof on the object (for
example; return sizeof(t);).

The function template total_size should take an arbitrary count of parameters with arbi-
trary types. total_size should apply get_size on each parameter and should return the
sum of all the sizes.
There are testcases given in given_files/program4.cc.
Hint: If you are having trouble that the compiler choses the wrong overload or if you have
problems with ambiguity, try to add an extra argument to your helper functions to control
the overload resolution.

TDDD38 Page 6 of 6 2019-04-25

5. [5p]In this assignment you are to implement an OutputIterator (called LegacyOutputIterator
on cppreference) sorted_insert_iterator that insert elements in sorted order into a con-
tainer. Sorting should be done according to a comparator given by the user.
sorted_insert_iterator should be a class template with two template parameters;

Container an arbitrary container that is sorted.
Compare a function object that takes two parameters, left and right which has type

Container::value_type and returns true if left should be inserted before right in
the container and false otherwise.

Compare should have std::less as default type.
The class template sorted_insert_iterator must contain the five common member types
of iterators (value_type, iterator_category, reference, pointer and difference_type).
All of these can be an alias for void except for iterator_category which should be
std::output_iterator_tag.
sorted_insert_iterator should have one constructor that takes a reference to a container
of the type Container and a function object of type Compare, both of which should be stored
as data members.
You must overload all the operators required by OutputIterator, which can be found here
https://en.cppreference.com/w/cpp/named_req/OutputIterator.
You should also create a function template sorted_inserter that takes a container and
a comparator, and returns a sorted_insert_iterator based on those parameters. Note
that the comparator parameter should be optional (i.e. should be default constructed if no
argument is given by the user).
There are testcases given in given_files/program5.cc. You should not have to modify
these testcases at all.

https://en.cppreference.com/w/cpp/named_req/OutputIterator

