
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Eric Elfving 2018-04-05

Computer examination in
TDDD38 Advanced Programming in C++

Date 2018-04-05

Time 08-13

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Eric Elfving (eric.elfving@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Eric Elfving (013-28 2419)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory given_files (write protected). The exam will be

available as a pdf in this directory at the start of the exam.
• Files for examination must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.

TDDD38 Page 2 of 5 2018-04-05

Theory questions
1. Answers may be given in either Swedish or English. Write all your answers in one text file

and submit as assignment 1.
(a) [1p]Why is it usually wrong to implement operator<< (formatted stream output) as a

member function?
(b) [1p]There are several operators that only can be written as non-static member functions,

name two.
(c) [1p]What is an inline namespace?
(d) [1p]What is wrong in the following example:

string & fun()
{

string str {"hello"};
return str;

}

int main()
{

cout << fun().length();
}

(e) [1p]What is bad with this code:

class Base {
Base()
{

// ...
fun();

}
virtual void fun() = 0;

};

TDDD38 Page 3 of 5 2018-04-05

Practical questions

2. [5p]Until reflections are added to the language, we have quite crude ways of querying the
compiler about the types involved in expressions. In this assignment, you are about to
create some tools to help with type information. When you are done, we’ll be able to get
type name and size for two common types and have an easy time extending for more types.
Getting the type name is rather simple. In the given code in file given_files/program2.cc,
there is a primary template called Type_Name. Copy this file to your working directory and
add two specializations to Type_Name, one for int that has a name function that returns
the string ”int” and a specialization for std::string that has a name function that returns
”string”.
For size, the simplest solution is just to call the sizeof-operator, but we want more infor-
mation that that. For any type that has a size member function, we want that function
to be called at runtime to find the number of elements of the actual object and multiply
that with the size of the value type using sizeof (assume that there is a value_type type
member). If the type doesn’t have a size member, just call sizeof.
Create a template class Meta_Type that has one static member function name that calls
Type_Name::name and a member function size that returns the size (number of elements
or size of the type) according to the previous definition.
Overload the formatted output operator (operator<<) for Meta_Type to make the given
main function compile and work according to the comments.

3. [5p]When printing data to some stream, it is common to want to wrap the text at some specified
line length. In this assignment, you are going to write an OutputIterator that simulates this
behavior.
Create a class LineWrapper having the five common member types required by an iterator
(value_type, iterator_category, reference, pointer and difference_type), all can
be an alias for void except iterator_category which should be std::output_iterator_tag.
Internally, an object of type LineWrapper keeps track of an output stream, a maximum
length and the length of the current line. The stream and the max length can be set in
the constructor (should be defaulted as std::cout and 80) while the current length always
start at 0.
Overload the operators required on OutputIterator according to http://en.cppreference.
com/w/cpp/concept/OutputIterator. For hints on implementation, study the usage in the
implementation of copy at http://en.cppreference.com/w/cpp/algorithm/copy.
When you are done, the given code at given_files/program3.cc should work without any
modifications together with your iterator.

http://en.cppreference.com/w/cpp/concept/OutputIterator
http://en.cppreference.com/w/cpp/concept/OutputIterator
http://en.cppreference.com/w/cpp/algorithm/copy

TDDD38 Page 4 of 5 2018-04-05

4. [5p]Your team is about to create a game and you are responsible of creating a part of the class
hierarchy that describes objects that you want to draw to the screen. At the moment, your
game can draw people (class Human), cats, walls and doors. Create a base class Object
that stores and lets the user access the object’s position and name. It should also have a
member function collide that checks if this object collides with another object. By default,
this is done by checking if the two objects has the same position, but this can be overridden
by subclasses.
There is a direct subclass to Object called Movable to represent objects that can move.
Movable has a member function move_to that sets the position and a member function move
that all subclasses have to implement (all have different behavior). Create two subclasses
to Movable; Cat and Human. In this simple version, cats move horizontally (increase x in
move) and will collide with doors and walls that are at the same location. Human objects
move vertically (only increase y in move) and will only collide with Wall objects if they are
in the same location (can open Doors).
It should not be possible to copy any objects in the class hierarchy.

Object

position : Point
name : string

+ collide(Object): bool
+ get_position(): Point
+ get_name(): string

Movable

+ move_to(Point): void
+ move(): void

Human

+ collide(Object): bool
+ move(): void

Cat

+ collide(Object): bool
+ move(): void

Wall

Door

There are also some implementation to be done as a simple test program, see comments in
the given code at given_files/program4.cc.

TDDD38 Page 5 of 5 2018-04-05

5. [5p]The BBP Formula (named after Bailey, Borwein and Plouffe), seen below, can be used to
calculate π.

π =
∞∑
n=0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)(
1

16

)n

The file given_files/program5.cc contains a program that let the user for a number of
terms and gives an approximation of π for that many terms. Copy the given file and refactor
the code so that it uses the STL as much as possible. The main goal is to make the code
more readable by selecting algorithms that express your intent in each calculation. A full
solution shouldn’t require any standard iteration statements.

