LINKOPING UNIVERSITY

Department of Computer and Information Science

Software and Systems

Eric Elfving 2018-01-08

Computer examination in

TDDD38 Advanced Programming in C++

Date 2018-01-08 Administrator

Time 08-13 Anna Grabska Eklund, 28 2362
Department IDA

Course code TDDD38 Teacher on call

Exam code DAT1 Eric Elfving (eric.elfving@liu.se, 013-28 2419)

Will primarily answer exam questions using the

Examiner student client.
Will only visit the exam rooms for system-
Klas Arvidsson (klas.arvidsson@liu.se) related problems.

Allowed Aids (tillatna hjdlpmedel)

An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system.

Grading

The exam has a total of 25 points.
0-10 for grade U/FX

11-14 for grade 3/C

15-18 for grade 4/B

19-25 for grade 5/A.

Special instructions

e All communication with staff during the exam can be done in both English and Swedish.

e Don’t log out at any time during the exam, only when you have finished.

o Given files are found in subdirectory given_files (write protected). The exam will be
available as a pdf in this directory at the start of the exam.

o Files for examination must be submitted via the Student Client, see separate instructions
(given_files/student_client.pdf)!

e When using standard library components, such as algorithms and containers, try to chose
"best fit“ regarding the problem to solve. Avoid unrelated /unnecessary computations and
unnecessary data structures.

o C style coding may cause point reduction where C++ alternatives are available.

e Your code should compile. Commented out regions of non-compiling code may still give
some points. Resource leaks and undefined behavior is important to fix.

TDDD38 Page 2 of 6 2018-01-08

Theory questions

Answers may be given in either Swedish or English.

1. (a) Give an example of a container that has RandomAccess iterators but non-contigious
memory layout.

(b) What are the consequences of declaring a member function explicit and on what
type of member functions does it make sense?

(c) Class Derived inherits from Base. Base has a virtual function foo which Derived
overrides. What is the syntax to call the implementation of foo in Base from within
Derived?

(d) Given a code example in which slicing takes place.

(e) What is a fold expression

TDDD38 Page 3 of 6 2018-01-08

Practical questions

. In this exercise, your usage of the standard library containers and algorithms is in focus.
Any hand-written iterations will give point deductions. Write exprissive code - use the
algorithm that best describe your intentions.

C++11 added much to the language. In this exercise you are going to study the randomness
of parts of the random header. Testing randomness can be hard and the test you are about
to create might not be the best way of analysing it. The main goal is to generate points
and plot them in a square image which should be viewable in a standard image viewer. Any
cluster of points might support a theory of lack in randomness. We are using a very simple
bitmap image format called PPM (or Netbpm). The PPM format is very simple. First we
have the header which is P1 on one line to state that it is a bitmap image followed by one
line containing the width and height of the image on one line. After the header the points
are shown as 0 or 1, each line separated by a newline character. A simple image containing
the letter J is available as given_files/J.ppm. You can view it in an image viewer or just
open it in some text editor to get a feel for the format.

1. The program is started with two commandline arguments, image size and output
filename. If any of the follwing conditions are true, the program should print an error
message and exit:

e The wrong number of arguments are given
« The image size is not an integer or outside the interval [2, 1000]
e The filename doesn’t end with ”.ppm”

2. Try to open the file. Exit with an error message if the file couldn’t be opened.

3. Create a vector (called values later on) with a total of SIZE*SIZE (this number is
called N later on) number of integer values.

4. Fill the vector with random values in the range [0, SIZFE) (non-inclusive) using a
mersenne-twister engine and uniform_int_distribution.

5. Create a new vector points containing N/2 elements of type pair<int, int>.

6. Create points from the values vector by using indexes [0, N/2) as one coordinte and
[N/2,N) as the other. Store the values in points. The first element of points will
then be the combination of index 0 and N /2 from values and the last will be index
N/2—1and N — 1.

7. Sort points. It should be sorted by line and each line should be sorted by column.

8. Remove duplicates from points.

9. Create a vector<vector<bool>>, image, with SIZE number of vector<bool>, each
of witch contain SIZE bool values. Fill image with the value false.

10. For each point in points, set the corresponding index in image to true. KEach
vector<bool> in image represent one line in the output image.

11. Print the string "P1\n" followed by the SIZE twice (separated by space) followed by
newline to the output file.

12. For each line (vector<bool>) in image, print the boolean values as integers (0 or 1)
to the file. Separate the values with spaces and follow each line with a newline. It is
ok to have a space before the newline character.

[5p]

TDDD38 Page 4 of 6 2018-01-08

3. When profiling programs, you are often interested in time taken to run a specific part of [5p]
the code. Often this is solved with hardware support, but in this exercise you are going to
create a function object class that can measure the time taken to run a function.

Create a template class Profiler that accepts some sort of callable (such as function,
function object or closure type) as template argument. Profiler has a copy of the provided
callable as well as a Timer object (available in given_files/Timer.h) as well as a counter
for total time taken between all calls to the callable and a counter for number of calls. The
following member functions are to be created:

Constructor Two variants, a default constructor to value-initialize the callable and one
that accepts a callable to create a copy.

Function call operator Calls the callable and increments the total time taken (use Timer: :reset
before and after) and number of calls. Returns the return value from the function.

calls Returns the number of calls to the callable.
mean return the mean time taken for the function call. Behavior is undefined if function
hasn’t been called (no check required).
This exercise will be graded according to the following scheme:
2p Profiler has a good general structure and function call operator works for functions
that has return type and lacks arguments.
1p Function call operator also works for callables without return type
1p Function call operator forwards arguments to given callable
1p The argument forwarding is done correctly (keeps cv-qualifications and referenceness

of arguments)

The given code in given_files/program3.cc shows some possible test code based on these
criteria.

TDDD38 Page 5 of 6 2018-01-08

4. The programming language Python has a built-in function called enumerate that, given
some iterable range of values, creates an iterable range where each element is a value from
the original range and its index in the range. In this exercise, you are going to mimic this
function from python.

When finished, the following snippet should compile (as C++17)
(available as given_files/programd.cc):

std::vector values{1,3,4,6,7};

for (auto [index, value] : enumerate(values))
{

std::cout << index << ": " << value;
}

To make this work, you are to create two template classes, one iterator class Enumerate_Iterator
and one simple class enumerate. Enumerate_Iterator keeps track of an iterator (the type

is provided as template argument) and an index internally, the index starts at 0 and the
iterator is provided in the constructor. The following type declarations and operations
should be supported or provided by Enumerate_Iterator:

Constructor Initialize the internal iterator

operator+-+ Increment the index and internal iterator. Should exist in both prefix and
postfix versions

operator==, operator!= Comparison between Enumerate_Iterators. Just compare
the internal iterator

operator* Dereference operator to get a pair containing the current index and a reference
to the current value. Dereferencing past the end is undefined behavior (no check
required)

operator-> Usually returns a pointer to a value. Since we are creating our values (pairs),
this becomes a bit more tricky (don’t want to return a pointer to a temporary object).
Create a new type Data_Proxy in Enumerate_Iterator that contain a pair (index
and reference to value) and overload operator-> on that type as well (to return the
address of the contained pair). operator-> will be called recursively until an address
is found.

Member types The standard library requires five type declarations on a iterator:

value_ type The type returned by operator*
iterator__category std::forward_iterator_tag

difference__type Type of value returned when subtracting iterators. In this case it
doesn’t matter since we don’t provide that operator, just use std: :ptrdiff_t.

pointer Type returned from operator->
reference Reference to value_type

The class enumerate is very simple. It stores a reference to a container (type of container as
template argument) passed as argument to the constructor and has the following members:
constructor Accepts a reference to a container and stores this as member

begin Returns an Enumerate_Iterator initialized with the start of the container

end Returns an Enumerate Iterator initialized with the end of the container

TDDD38 Page 6 of 6 2018-01-08

5. The game chess has 64 squares with different pieces that move in specific ways. Every
square has a file (column labeled A’ to "F’) and a rank (row labeled 1 to 8). In this assign-
ment, you are to create a class Chess_Piece that has a position (of type Square) and a
Movement Behavior. Movement Behavior is an abstract class used as a base for a class hi-
erarchy with one member function, bool valid_move(Square start, Square end) which
return true if the current piece is able to move from start to end.

Create the following subclasses to Movement_Behavior; Rook_Behavior, Queen_Behavior
and Pawn_Behavior. A move is valid for a Rook if the difference in rank or file is 0, Queen
extends this to also accept moves diagonally (difference in rank and file is the same). A
movement for Pawn is valid if the file is unchanged and the difference in rank is 1. The first
movement of a pawn also accepts a difference of 2 in rank.

Usually, this type of problem can be solved by templates, but there is one special rule in
chess that makes it harder to use templates. Once a pawn reaches the other side it turns
into a queen. This means that its behavior has to change. Add a new member function
bool should_change(Square) to Pawn_Behavior that returns true if the square is in the
last rank (just use 8 for this exercise).

Chess_Piece has the following member functions:
Constructor Accepts a Square and a pointer to Movement_Behavior and stores them as
members.

move(Square) Checks if it is valid (according to the current behavior) to move to the given
Square and moves if so. If the current behavior is Pawn_Behavior and it has reached the
other side (should_change returns true), the behavior is changed to Queen_Behavior.

position Returns the current position.

When you are done, the code given in given_files/program5.cc should compile. Overall
class design is of course important in this exercise.

