
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Eric Elfving 2017-05-29

Computer examination in
TDDD38 Advanced Programming in C++

Date 2017-05-29

Time 14-19

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Eric Elfving (eric.elfving@liu.se, 013-28 2419)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A.

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory given_files (write protected). The exam will be

available as a pdf in this directory at the start of the exam.
• Files for examination must be submitted via the Student Client, see separate instructions

(given_files/student_client.pdf)!
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.



TDDD38 Page 2 of 6 2017-05-29

Theory questions
Answers may be given in either Swedish or English. Write your answers to all theory questions
in one text file called THEORY.TXT and submit it as ASSIGNMENT #1.

1. [1p]What does it mean that a type is contextually convertible to bool?

2. [1p]A function-try-block is sometimes good when defining constructors. Why are they especially
good in that use-case?

3. [1p]In a template parameter type declaration, you can use typename or class. Does it matter
which one you use?

4. [1p]Why should one avoid to specialize a function template? What is the, often better, alter-
native?

5. [1p]In which situation would one chose to declare a destructor pure virtual?



TDDD38 Page 3 of 6 2017-05-29

Practical questions

6. [5p]Copy the file program6.cc from the given_files directory to your working folder and
make changes to your copy. Submit your answer as ASSIGNMENT #6.

As you all know, fruits and berries have lots of important vitamins and minerals needed by
the body. In this assignment you are to create a class hierarchy to symbolise a (very small)
subset of all botanical fruits (which usually differ from the culinary definition of fruit). A
fruit can either be dehiscent (they can open to release seeds) or indehiscent (releases seeds
in some other way, such as decay or predation). In this short example, we are going to focus
on the vitamin C content of fruit and create a program that calculate the total vitamin C
content of some set of fruit.
Create an abstract base class Fruit having the following public member functions:

• string name() Gives the name of the current fruit, such as ”Apple” or ”Pea”.
• int vitamin_c_content() Calculates the total content of vitamin C in the given fruit

(expressed in mg).
• bool dehiscent() Returns true if the fruit is dehiscent and false otherwise.
• int mass() Returns the mass of the fruit.

All fruit has a mass (expressed in grams) and a vitamin C concentration (in mg/100 gram
of fruit).
Create an abstract subclass to Fruit called Berry. A berry is by definition developed from
one flower and contains all its seeds. All berries are indehiscent, other than that a berry
has no special abilities that has to be implemented here.
Create two direct subclasses to Fruit, Apple and Pea. Also create a subclass to Berry,
Lemon. Information about the three fruits can be found in table 1.

Fruit (also string returned from name) Vitamin C concentration (mg/100 g) Dehiscent
Apple 4.6 No
Lemon 53 No
Pea 40 Yes

Table 1: Some fruit and their data

Modify the given code according to these instructions and comments in the code. Please
note that you should try to store as little data as possible.



TDDD38 Page 4 of 6 2017-05-29

7. [5p]Write your code on a file named program7.cc and submit it as ASSIGNMENT #7.

There is an input data file, life.txt, in directory given_files.
Please note that standard library components must be used whenever possible and always
try to find “best fit”. Avoid hand-written loops (for, while or do), use standard algorithms
when suitable. If a user defined function is required, use lambda expression or a function
object, not a normal function.

The program reads input from standard input stream, cin. When the program is run, cin
is to be redirected to read from a given input file:

a.out < given_files/life.txt

Output is to be written to the standard output stream, cout.
The program shall do the following, step by step. Note, in each step, no more and no less
than what is specified shall be done!

1. read all words from the input file and store in a std::vector container
2. print the number of words read (see example below)
3. lower case all words in the container
4. order the words in the container in ascending lexicographical (alphabetical) order
5. remove all duplicates from the container, i.e. there shall be only one instance of each

unique word left in the container
6. print the number of unique words in the container (see example below)
7. print all words in the container, with one space after each value (see example below)
8. reorder the words in the container so they become ordered primarily by length (shortest

words first), secondly in alphabetical order (words with equal length in alphabetic
order).

9. print all words in the container, with one space after each value (see example below)

Example of output from the program (Note: the word outputs are not complete, ... sym-
bolizes some left out words)

172 words read.
95 unique words found.

The unique words in alphabetical order:
a afraid after aint all am and anytime anywhere around as balloon be
beautiful bungee can care dare dark ... take that the there to toast
under up walk wanna want watch when will world worst would you your

The unique words ordered by length:
a i am as be do if in is it no of oh on so to up all and can doo fly
fun get not one ooh out see the ... evening jumping ladders rabbits
shivers anywhere beautiful sometimes especially superstitious



TDDD38 Page 5 of 6 2017-05-29

8. [5p]Copy the file program_8.cc from given_files to your working directory. The file contains
a given class, named Wrapper, and a test program. Add your own code to this file and
submit your answer as ASSIGNMENT #8.
The given class is a rudimentary wrapper class for int, and the test program that creates
a few Wrapper objects. Two things are to be done:

• Wrapper shall be made into template, so any kind of values, fulfilling the requirements
of Wrapper, can be wrapped.

• We want to trace the creation and destruction of Wrapper objects, by letting “someone”
print messages like the ones below.

Object created: Wrapper<int> (0xffbfdda0)
Object created: Wrapper<int> (0xffbfdda0)
Object created: Wrapper<int> (0x28a08)
Object created: Wrapper<double> (0xffbfdd88)
Object destroyed: Wrapper<int> (0x28a08)
Object created: Wrapper<char> (0xffbfdd78)
Object destroyed: Wrapper<char> (0xffbfdd78)
Object destroyed: Wrapper<double> (0xffbfdd88)
Object destroyed: Wrapper<int> (0xffbfdda0)

The hexadecimal values printed within parenthesis is the address of the object in question,
which uniquely identifies the object.
These trace printouts could easily be achieved by letting the Wrapper constructors and de-
structor do the printing. But, we do not want to modify the Wrapper in such an intrusive
way, and we want to be able do the same for other classes, so instead we shall use the C++
idiom named CRTP (the Curiously Recurring Template Pattern).

In CRTP we have a template class (B) with a template type parameter, say T, which
implements the functionality we want to inject into another class (D), template or not. D
is derived from B and D is also given as instantiation argument for T. This circular looking
pattern may seem curious, but the fact that the class we inject into (D) and its members
will be available in the member functions of the injected class (B) through the template
parameter T, makes CRTP very powerful.
Define a template class named Object_Tracer, which implements trace outputs, as de-
scribed above, i.e. print out a message when an object is created, and print a message
when an object is destroyed. Use Object_Tracer to inject such tracing functionality into
Wrapper, using CRTP.
The member functions of Object_Tracer shall be defined separately from the definition
of Object_Tracer, i.e. not inclass, but still in the given file program8.cc. The type
name of an object can be found by using a type_info object, created by a typeid ex-
pression, and then call the type_info member function name(). The type names to be
printed, Wrapper<int> or Wrapper<std::string> will not appear without some effort,
since name(), in g++, returns the mangled name, such as 7WrapperIiE. To find the ac-
tual type name we need to demangle the name returned by name(). Include demangle.h
and supply demangle.cc in the compilation. The function demangle_name(), declared in
demangle.h, takes a type_info object as argument and returns the demangled name as a
string.



TDDD38 Page 6 of 6 2017-05-29

9. [5p]Copy the file program9.cc to your working directory. Add your code to this file and submit
your answer as ASSIGNMENT #9.
Define an iterator class named sort_insert_iterator, which can be used to insert elements
in a sequential container (e.g. a vector, a list, or a deque) in sorted order, ensuring that
memory will be allocated when required. sort_insert_iterator shall

• be a template with one template type parameter representing the container type.
• fulfill the OutputIterator concept, i.e. support the operations listed later and have the

following member type declarations:
value_type ⇒ void
difference_type ⇒ void
reference ⇒ void
pointer ⇒ void
iterator_category ⇒ std::output_iterator_tag

• have a constructor taking the container to be bound as argument and binding it in a
suitable way

Define a utility function named sort_inserter(), to ease creating sort_insert_iterator
objects.
sort_inserter() takes the container in question as argument and returns a sort_insert_iterator
object bound to the container. Example, where start and end are iterators representing a
range of int values:

std::vector<int> v1;
std::copy(start, end, sort_inserter(v1));

Looking at the implementation of algorithm copy, we can find out most of what is required
for sort_insert_iterator, which is the type of the iterator named result:

for (; first != last; ++result, ++first)
*result = *first;

return result;

• operator++, here used in its prefix version, shall be defined in both prefix and postfix
version. The position to insert at is dependent on the value to be inserted (*first),
so keeping track of any position in the container is not relevant. This means that
operator++ have nothing to do besides fulfilling the basic call semantics expected for
operator++.

• operator= is the operation which shall insert the value (*first) in sorted order into
the container referred to by result. Values are to be ordered using operator<. The
container is required to have the following member function, where iterator is an
iterator type supplied by the container:

iterator insert(iterator, const T&);

• operator* applied to result must return the sort_insert_iterator object, i.e return
result itself.

• result is passed by value to algorithm copy and returned by value, so sort_insert_iterator
objects must be copyable.


