
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Eric Elfving 2017-04-20

Computer examination in
TDDD38 Advanced Programming in C++

Date 2017-04-20

Time 14-19

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Eric Elfving (eric.elfving@liu.se, 013-28 2419)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A.

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory given_files (write protected). The exam will be

available as a pdf in this directory at the start of the exam.
• Files for examination must be submitted via the Student Client, see separate instructions

(given_files/student_client.pdf)!
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.

TDDD38 Page 2 of 6 2017-04-20

Theory questions
Answers may be given in either Swedish or English. Write your answers to all theory questions
in one text file called THEORY.TXT and submit it as ASSIGNMENT #1.

1. [1p]Given the following snippet of code, give a reason for having the using declaration on line
4 instead of qualifying the call on line 5 (i.e. return std::begin(range)).

1 template <typename Range>
2 auto iter(Range && range)
3 {
4 using std::begin;
5 return begin(range);
6 }

2. [1p]Given the following primary template declaration, give a declaration of a specialization of
foo for type char.

template <typename T>
struct foo;

3. [1p]Assuming v is a std::vector<int>, why is the following code wrong?

static_assert(v.size() > 0, "vector is empty!");

4. [1p]Assume you have definitions for the following functions:

void fun(int, short);
void fun(int, double);

The call fun(2,3) will give an ambiguous overload. Why?

5. [1p]Describe what length below does and give a valid example of a call to length.

template <typename ...Args>
int length(Args && ... args)
{

return sizeof...(args);
}

TDDD38 Page 3 of 6 2017-04-20

Practical questions

6. [5p]The file given_files/program6.cc contains some given code. Copy the file and add im-
plementation as stated below and submit it as ASSIGNMENT #6.

The main task in this assignment is to read a number of images (or at least data on images)
from the user and print an estimated total size of the given images. All images have a size
(width and height) but different image formats represent the image data in different ways
and will thus require different storage space.

The given program reads descriptions for different images and tries to create objects to rep-
resent the given input. Your task is to create classes to represent different image formats.
You are required to create an abstract base class Image with three derived classes PNG, JPG
and BMP. PNG and BMP will only require the width and the height, JPG also need a level of
quality (given as an integral value between 1 and 100).

All concrete classes must have a member function parse that takes an Image_Data (given
class). If the data represent an image of the current class, parse will create a new object
dynamically and return a pointer to it, otherwise it will return nullptr. All classes must
also implement a function size which return the size according to the table below (int):

BMP width * height * 3
PNG width * height * 1.5
JPG width * height * 3 * (quality/100.0)

Add code to the end of main to calculate and print the total size of all images entered by
the user according to the example below.

Enter one line for each image on the format "type [type specific data]". Exit with "q".

JPG 5000 3000 50
BMP 100 100
TIFF 300 355
!!! TIFF is an invalid file format !!!
PNG 1000 1000
JPG 100 200 100

Total size: 9050000 bytes!

TDDD38 Page 4 of 6 2017-04-20

7. [5p]Write your code on a file named program7.cc and submit it as ASSIGNMENT #7.

In this exercise, you will implement a simple compression algorithm using the standard
library components. It is extra important for you to show your knowledge and skills in the
standard library and tools available, usage of normal iteration statements will give deduc-
tions.

Your task is to read an unknown number of words and replace the 10 most common words
with shorter symbols, thus reducing the number of characters in the text. Your program
will also print a list of words that have been replaced so that it’s possible to go back to the
original text.

Algorithm:

1. Read all words from STDIN to a vector<string> (called words below).
2. Create a frequency table of the words.
3. Sort the frequency table in descending order of frequency.
4. Copy the ten most common words to a new vector<string>, replace.
5. Replace the words in words that also exist in replace. A word that exists in replace

is replaced by the symbol $N, given that N is the index of the word in replace. The
10 words will then be replaced with the symbols $0 to $9.

6. Print a translation table with the format $0=word1;$1=word2;...;$9=word10; on
one line on cout.

7. Print all words in words to cout separated with one space. This will remove all other
kind of whitespace that happened to exist in the given output (expected behavior).

Steps 2 and 3 might require new data structures. That is okay, just make sure not to copy
more data then necessary.
The directory given_files contains a program uncompress that takes the output from
your program and can be used to test your program. The following command should give
the contents of the file textfile.txt as output (if you disregard difference in whitespace)
if everything works.

cat textfile.txt | a.out | given_files/uncompress

TDDD38 Page 5 of 6 2017-04-20

8. [5p]Copy program8.cc from directory given_files to your working directory, modify it ac-
cording to descriptions below and submit as ASSIGNMENT #8.

A class Number is given. An object of type Number stores an integer value, which can be
initialized or set by a double or a double compatible value, which will then be truncated
(automatic conversion from double to int).

Modify Number to be a class template, with three template parameters:

• one for the type of the stored value, so this type can be chosen, e.g. as short, int, long
int, long long int, or any other suitable type.

• one for the parameter type of the constructor and set_value(), so this type can be
chosen, e.g. as float, double, long double, or any other suitable type with rounding
possible.

• one for a rounding policy, so it can be chosen how values given to the constructor or to
set_value() are to be rounded when the stored value is initialized or set, e.g. round
down, round up, round towards zero, etc.

Define three policy classes, named Round_Down, Round_Up, and Round_Towards_Zero, each
with a member function round(), taking the value to be rounded as argument:

• Round_Down round down (towards negative infinity), 9.5 is rounded to 9, and -9.5 is
rounded to -10. This is the same as the floor function.

• Round_Up round up (towards positive infinity), 9.5 is rounded to 10, and -9.5 is rounded
to -9. This is the same as the ceil function.

• Round_Towards_Zero round towards zero, 9.5 is rounded to 9, and -9.5 is rounded to
-9.

Round_Towards_Zero is the default rounding policy for Number.

Modify Number to use the rounding policy when required and possibly in other respects
when made a template.
Modify the given test code so that the program gives the following output:

Value Down Up Towards 0

+9.67 +9 +10 +9
+9.50 +9 +10 +9
+9.35 +9 +10 +9
+9.00 +9 +9 +9
+0.00 +0 +0 +0
-9.00 -9 -9 -9
-9.25 -10 -9 -9
-9.50 -10 -9 -9
-9.67 -10 -9 -9

Hint: the floor() and ceil() standard library functions, come with <cmath> and can be
handy when implementing the rounding policies.

TDDD38 Page 6 of 6 2017-04-20

9. [5p]Copy file program9.cc from the directory given_files to your working directory. Add
your own code to that file and submit as ASSIGNMENT #9. The given file contains a test
program.

Construct a container class named Ordered_Vector, where the elements are stored in order
according to some comparison.

Ordered_Vector shall be a class template with two template parameters:

• one for the element type
• one for the comparison to be used for ordering the elements – std::less shall be

default

std::vector shall be a base class of Ordered_Vector. In this way most of the properties
of Ordered_Vector will be obtained from std::vector.
Ordered_Vector shall have the following properties:

• default constructor
• copy and move constructor
• copy and move assignment operator
• destructor
• size() – same as vector<T>::size
• empty() – same as vector<T>::empty
• clear() – same as vector<T>::clear
• operator[] – same as vector<T>::operator[], but only the const version.
• const_iterator – same as vector<T>::const_iterator
• begin() – same as vector<T>::begin, but only the version that gives const_iterator.
• end() – same as vector<T>::end, but only the version that gives const_iterator.
• cbegin() - same as vector<T>::cbegin
• cend() - same as vector<T>::cend
• insert(x) – a member function which takes a value of the element type in question

and inserts the value in order into the Ordered_Vector object.

Note, using sorting, e.g. algorithm std::sort, to order the elements is not allowed! Ele-
ments must be inserted in order!
No other std::vector members than those mentioned above are allowed be part of the
public interface of Ordered_Vector.
Hint: The using declaration (class scope context) can be very helpful...

