
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Eric Elfving 2016-08-17

Computer examination in
TDDD38 Advanced Programming in C++

Date 2016-08-17

Time 14-19

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Eric Elfving (eric.elfving@liu.se, 013-28 2419)
Will primarialy answer exam questions using
the student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A.

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory given_files (write protected). The exam will be

available as a pdf in this directory at the start of the exam.
• Files for examination must be submitted via the Student Client, see separate instructions

(given_files/student_client.pdf)!
• When using standard library components, such as algorithms and containers, try to chose

“best fit” regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points.

TDDD38 Page 2 of 6 2016-08-17

Theory questions
Answers may be given in either Swedish or English. Submit your answers to all theory questions
in one text file called THEORY.TXT and submit it as Assignment #1.

1. [1p]Consider the following function. Why is this interface a bad design? (hint, think about
ownership...)

X* compute(/* some args */)
{

X* res = new X{};
// do something with res
return res;

}

2. [1p]What is meant by the keyword constexpr and why is it sometimes needed?

3. [1p]Give some short code example showing why it is important to always do member initializa-
tion in declaration order in a member initializer list.

4. [1p]Consider the following class:

class X
{

};

Declare a user-defined conversion function to convert X into int as a member function.

5. [1p]Give an example of a class that can be passed to the function foo below:

template <typename T, typename U,
template <typename , typename > class Container >

void foo(Container <T,U> const &)
{
}

TDDD38 Page 3 of 6 2016-08-17

Programming exercises

6. [5p]Copy the file named program6.cc to your working directory. The file contains instructions
besides those below. Edit the file and submit your answer as ASSIGNMENT #6.
Design a polymorphic class hierarchy for handling celestial bodies, such as stars, planets
and moons. Stars and planets are regarded as two different kind of celestial bodies and, in
our universe, a moon is a kind of planet. A planet always belongs to a star, and a moon
always belongs to a planet.
Celestial_Body is a base class for all other celestial body classes. Celestial_Body stores
the name (string) and the size (double) of the celestial body. When a Celestial_Body
object (subobject) is created, all data members shall be explicitly initialized, and thereafter
never changed. Member functions:

• get_name() returns the name.
• get_size() returns the size.

Star is a direct subclass of Celestial_Body, and also stores the name of the galaxy it
belongs to (string). When a Star object is created, its name, size and the name of the
galaxy it belongs to shall be explicitly initialized, and thereafter never changed. Member
function:

• get_galaxy() return the name of the galaxy the star belongs to.

Planet is a direct subclass of Celestial_Body, and also stores a reference to the celestial
body it belongs to (i.e., a Star), the planet’s orbit time (double), and information about
whether the planet is populated or not (bool). When a new Planet is created, its name,
size, orbit time, and a pointer to the celestial body it belongs to shall always be explicitly
initialized, and thereafter never changed. If no initial value for population is given, the
default is “not populated” (false). Member functions:

• get_celestial_body() return a pointer to the parent celestial body
• get_orbit_time() return the orbit time
• is_populated() return true if populated, otherwise false
• populated(bool) takes a bool to modify the state for population.

Moon is a direct subclass of Planet. There are no specific data stored for a Moon compared
to a Planet, and no specific member functions. A moon belongs to a planet and in our
universe moons may be populated.

Besides required special member functions, no other functions than those mentioned above
are allowed.
Celestial body objects cannot be copied in any way.
Also, see instructions in the given file!
Design with care – keep within the given specifications!

TDDD38 Page 4 of 6 2016-08-17

7. [5p]Write your code on a file named program7.cc. Submit your answer as ASSIGNMENT #7.

Note: For full credit, the problem must be solved using only standard library components
and, only if required, user defined lambda expressions (not ordinary functions, even if that
would work). Especially, no explicit repetition (for, while or do) is needed.
This is about computing some statistical dispersion properties, namely minimum and max-
imum value, mean, median and population standard deviation for values entered into the
program.

• Mean is the sum of the values divided by the number of values.
• Median is the value that you would find in the middle if the values were sorted and

the number of values is odd. If the number of values is even, the median is computed
as the mean of the two values found in the middle if the values were sorted.

• Population standard deviation is computed as follows, step by step, but you may
combine these steps in your solution:
1. compute the difference between each value and mean
2. square each difference
3. compute the sum of the squared differences
4. divide the sum of the squared differences by the number of values
5. the square root of this quotient gives the population standard deviation

Input data is always integer values.
The program shall read input from standard input stream, cin until end of stream, and
write output to standard output stream, cout.
You are not allowed to sort the data. Minimal rearrangements necessary to compute re-
quired values is allowed.
Output should look as the example below (given that input was 4 2 1 5 8 1 7 9 3 4 6 5):

min value.........: 1
max value.........: 9
mean..............: 4.58333
median............: 4.5
standard deviation: 2.49861

TDDD38 Page 5 of 6 2016-08-17

8. [5p]Copy file program8.cc to your working directory, add your own code and submit as ASSIGNMENT #8.
Class Wrapper below is given.
class Wrapper {
public:

Wrapper(const int); // initialize value_
void set(const int); // set value_
int get() const; // access value_
std::string str() const; // string representation of value_

private:
int value_;

};

Define the declared member functions, at least str() shall have a separate definition (the
other ones may be defined in-class).
Make Wrapper a template and generalize it in two ways using template techniques:

1. Make it possible to vary the stored type, i.e. the type for value_, so that Wrapper
can be used for any type T fulfilling needed requirements, e.g. that T have a string
representation.

2. Make it possible to set a policy for textual representation, to be used by function
str() to produce and return a string representation of the stored value. If we have a
policy named Hexadecimal, an instance of Wrapper for int and Hexadecimal can be
declared as follows:
Wrapper<int, Hexadecimal > hexint(4711);
cout << hexint.str(); // the string 0x1267 is printed

When str() is called, policy Hexadecimal is to be used by str() to produce the string
representation of the stored value.
A string representation policy has one static member function convert(), taking a
value of type T and returning the value converted to a string, according to the policy.
Define two policy classes, Hexadecimal and Quoted:
• Hexadecimal is suited for integer types, to produce a string representation ac-

cording to hexadecimal representation in C++, i.e. starting with 0x and then the
value in hexadecimal representation (digits 0-9 and A-F). Hint: there is a stream
manipulator named hex. Example was shown above.

• Quoted is to put citation marks around the ordinary string representation for the
value, i.e. if value is 4711, the string returned by str() will be ”4711”, not just
the string 4711.
Wrapper<int, Quoted> citint(4711);
cout << citint.str(); // "4711"

If the stored type is std::string and the value is foobar, the string ”foobar”
should be returned by str().
Wrapper<string, Quoted> citstring("foobar");
cout << citstring.str(); // "foobar"

Create a main function that test the implementation fully.

TDDD38 Page 6 of 6 2016-08-17

9. [5p]Write your code on a file named program9.cc and submit your answer as ASSIGNMENT #9.
Design a utility class named Cycler, which can be bound to a container, with elements of
some type T, and then used to iterate over the elements of the container, cyclically, i.e.,
after visiting the last element in the container, the next element to be visited shall be the
first element in the container.
Cycler is a template with two template type parameters:

• one parameter T, representing the container elements
• one parameter Container representing the container, with default argument vector<T>

The requirements on the container are (no need for you to check this):

• contain elements of type T
• have member iterators at least fulfilling standard forward iterator requirements
• have a member function begin(), for obtaining an iterator to the first element in the

container
• have a member function end(), for obtaining a past-end-iterator for the container
• have a member function size(), for obtaining the size of the container, i.e. the current

number of element stored in the container

Cycler must have:

• a constructor for binding the container to cycle over, and initialize the Cycler object
to refer to the first element in the container; no copy of the container is to be created.

• a member function next(), which shall return a reference to the current element, and
then move to the next element in the container, cyclically

• a member function reset(), to reset the current position to the first element in the
container

• a member function size(), which returns the size of the container

Write a full program to test Cycler in a good way.

