
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2023-08-16

Computer examination in
TDDD38 Advanced Programming in C++

Date 2023-08-16

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT2

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be handed in separately from the code.

TDDD38 Page 2 of 9 2023-08-16

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.

TDDD38 Page 3 of 9 2023-08-16

1. [4p]Mathematical vectors can quite easily be modelled with std::vector, however the cal-
culations are a bit more combersome than what we would normally expect from a linear
algebra library. In this assignment we will explore how to use std::vector as mathematical
vectors.
You will write a program that does the following:

1. Read an integer n from std::cin, this represent the number of elements in our vectors.
2. Read an std::vector<double> called u from std::cin. This should read exactly n

elements.
3. Read a second std::vector<double> called v from std::cin. This should also read

exactly n elements.
4. Calculate and print the inner product of the two vectors u and v (see further down for

description of inner product).
5. Normalize both u and v and print their new values (see further down for description

of normalized vectors).

This assignment covers STL algorithms so you may not use any loops or recursions. You
must also choose appropriate algorithms and for this assignment std::for_each is not
considered appropriate.
Inner product: The inner product of two vectors is calculated by taking the sum of all
pairwise multiplied elements from each vector, i.e. if we have vectors u = (u1, u2, ..., un)
and v = (v1, v2, ..., nn) then the inner product is u · v = u1v1 + u2v2 + ...+ unvn.
Length of vector: Note that the length of a mathematical vector can be calculated by
taking the square root of the inner product of itself, i.e. |u| =

√
u · u.

Normalized vector: A vector is normalized if its length is equal to one. To normalize a
vector divide each component by the vectors length.

TDDD38 Page 4 of 9 2023-08-16

2. [5p]If you passed the midterm test then skip this assignment (you get full points).
There are builtin ways to store callable objects, i.e. functions, lambdas or function objects
as a singular common data type. But how does this work? In this assignment you will
implement a class hierarchy which solves this problem.
Note: You may not use std::function in this assignment.
Create three classes:

Callable a class template that takes one template type parameter. This class is completely
empty, instead the whole implementation of Callable is located in a partial specializa-
tion of Callable for the type Ret(Args...). This allows us to conveniently access the
return type (Ret) and parameter types (Args...). The content of this specialization
is described further down.
Whenever Callable is mentioned, keep in mind that it refers to this specialization.

Base_Implementation Is a polymorphic class which is declared and defined inside the
Callable class. There are no data members and a single pure-virtual function called
perform that returns Ret and takes Args as parameters.

Implementation A class template defined inside Callable which takes one template type
parameter T and inherits from Base_Implementation. We will assume that T is a
callable type (i.e. a function, a function object or a lambda): this assumption should
not enforced by the code or the compiler.
Implementation contains a data member called function that is of type T. This data
member must be initialized through a constructor, you determine what is reasonable
to have here.
Implementation overrides perform such that it calls function with the supplied ar-
guments and returns the value returned from calling function.

Callable has one data member called impl which is a Base_Implementation pointer. It
also implements Ret operator()(Args...) which simply calls perform on impl.
There must be a templated constructor that takes an arbitrary parameter T and dynamically
allocates a Implementation<T> object and store its address in impl.
Callable must overload operator= such that it takes an arbitrary object (assumed to be
a callable object) and allocates an appropriate Implementation instance and stores its
address in impl.
Note: Don’t worry about the rule of 5. No need to declare copy or move operations.
However you might need a destructor to make sure memory is handled correctly.
Note: You must make sure there are no memory leaks.
There are a few testcases given in given_files/program2.cc.

TDDD38 Page 5 of 9 2023-08-16

3. [2p]Discussion: What are glvalues and how do they relate to lvalues? What are considered
glvalues but not lvalues? What are the differences between those two types of glvalues?

TDDD38 Page 6 of 9 2023-08-16

4. [5p]Variadic packs are, in a sense, the meta programming analogue of an array of data types.
However, due to the limitations of templates and compile-time calculations, it is a bit more
involved than using normal arrays of values.
In this assignment you will construct a type trait called most_common which contains a
static constexpr variable called value and a type alias called type. most_common takes
a variadic template parameter Ts and the idea is that type contains the most commonly
occuring type in Ts and value contains the number of occurances of said type.
To implement this you must first create a type trait called occurance_count that takes a
data type T and a variadic pack Ts. This type trait contains a static constexpr variable
value which is supposed to contain how many times T occurs in Ts.
To implement occurance_count make two specializations:

• One specialization when Ts is empty. In this case value is 0.
• One specialization where Ts is split into First and Rest, where Rest is a variadic

template. Remember that you still have to include T as the first template parameter.
In this specialization value is initialized to be the sum of X and the value of most_common
evaluated over Rest, where X is 1 if T is the same type as First and 0 otherwise.

Note: The first template parameter T is not part of the variadic pack, but will instead
signal what type we are counting, so T is present in both specializations.
We will use occurance_count to implement most_common, this is done by implementing
two specializations of most_common:

• When there is only one type T then value is 1 and type is T.
• A specialization where the variadic pack is split into T and Ts. Implement two private

static constexpr variables called current and rest. current contains the number of
times T appears in the complete variadic pack (use occurance_count and recall that
T is the first type in the variadic pack). rest is set to most_common<Ts...>::value.
If current is greater than or equal to rest, then value is set to current and type is
set to T, otherwise value is rest and type is most_common<Ts...>::type.

There are testcases given in given_files/program4.cc. To make them work you must ei-
ther implement an alias template common_type_t which is an alias for common_type<...>::type
OR modify the tests so that they use ::type directly.

TDDD38 Page 7 of 9 2023-08-16

5. [3p]Discussion: Explain what the difference between a requires clause and a requires expression
is. How does requires clauses make it easier to constrain templates? What type of properties
can be checked using a requires expression? How does these constructs relate to SFINAE?
Give code examples that demonstrate how they both can be used.

TDDD38 Page 8 of 9 2023-08-16

6. [4p]One of the great benefits of streams is that we have a common interface for reading values
of various types. The way streams are designed is however not the only possible way to
do this. In this assignment you will explore alternatives for reading from input streams.
Create a function template read() that takes an std::istream and an lvalue reference to
some arbitrary type T.
This function will read values from the stream and put them into the passed in variable.
How the values are read from the stream depend on various properties of T:

1. If T is std::string, then it reads an entire line using std::getline().
2. If T is a container that has a push_back() function, then it should repeatedly read

values (using operator>>) of type T::value_type from the stream and insert them
into the container. This should be repeated until its not possible to read any more
values.

3. If T is a container that has an insert() function, then it should repeatedly read
T::value_type values and insert them at the end of the container until no more
values can be read.

4. Otherwise it should use the bultin operator>> to read a single value into the passed
in variable.

If there are conflicts between the cases than it should prioritize the one that appears first
in the list above.
Note that case #2 and case #3 are fairly similar. You don’t have to make them share
common parts, for these particular cases code duplication is OK.
There are testcases given in given_files/program6.cc.
Hint: Create a template class/function and use this one to create all the special cases.
If you are having trouble that the compiler chooses the wrong overload, try to add extra
arguments to the helper.
Hint: You can either use SFINAE or C++20 concepts to solve this assignment.

TDDD38 Page 9 of 9 2023-08-16

7. [2p]Explain what placement new refers to. How does it differ from the normal new operator?
Give a code example for how it is used. Is there anything in particular you have to consider
when a variable constructed with placement new is destroyed?

