LINKOPING UNIVERSITY

Department of Computer and Information Science

Software and Systems

Christoffer Holm 2020-08-19

Computer examination in

TDDD38 Advanced Programming in C++

Date 2020-08-19 Staff
Time 8-14 Teacher on call: Christoffer Holm (christoffer.holm@liu.se)
Department IDA Will answer questions through Microsoft Teams or E-mail.

Examiner: Klas Arvidsson, 013-28 21 46 (klas.arvidsson@liu.se)
Course code TDDD38 Administrator: Anna Grabska Eklund, 013-28 23 62

Exam code DAT1

Grading

The exam consists of three parts. Complete solutions/answers to part I and part IT are required
for a passing grade. It is also required that you have submitted to the “Examination rules”
submission in Lisam, which confirms that you swear to follow the rules.

The third part is designated for higher grades. It consists of two assignments. To get grade 4
you must solve one of these assignments. To get grade 5 you need to solve both.

Communication

e You can ask questions to Christoffer Holm (christoffer.holm@liu.se) through the chat in
Microsoft Teams or by E-mail.

o General information will be published when necessary in Microsoft Teams through the
team called Team TDDD38_Exam_2020_08_19. Be sure to check there from time to time.
A suggestion would be to turn on notifications in Microsoft Teams so you don’t miss any
important information.

e All communication with staff during the exam can be done in both English and Swedish.

o All E-mails must be sent from your official LiU E-mail address.

o In case of emergency call the teacher on call.

Rules

e You must sit in a calm environment without any other people in the same room.

o All types of communication is forbidden, the exception being questions to the course staff.

o All forms of copying are forbidden.

e You must report any and all sources of inspiration that you use. You may use cpprefer-
ence.com without citing it as a source.

e When using standard library components, such as algorithms and containers, try to chose

"best fit“ regarding the problem to solve. Avoid unrelated /unnecessary computations and

unnecessary data structures.

C style coding is to be avoided.



TDDD38 Page 2 of 9 2020-08-19

e All concepts discussed during the course are OK to use.

e Your code must compile. Commented out regions of non-compiling code are acceptable if
they clearly demonstrate the idea. Write a comment describing why that piece of code is
commented out.

¢ You must be ready to demonstrate your answers to the staff after the exam if asked to.

e Failure to follow these rules will result in a Failed grade.

Submission

Submission will be done through Lisam on this page:
https://studentsubmissions.app.cloud.it.liu.se/Courses/TDDD38_2020VT_0X/submissions
You can also find this page by going to https://lisam.liu.se, navigating to the TDDD38
course page and clicking on “Submissions” in the left-hand side menu. There your should see

the following submissions:

e 2020-08-19: Examination rules

o 2020-08-19: Partial submission (10:00)
o 2020-08-19: Partial submission (12:00)
e 2020-08-19: Final submission part I

e 2020-08-19: Final submission part IT

e 2020-08-19: Final submission part III

Partial submission: On the marked times you must send in the current state of all your
solutions (all files). Failure to do so within 5 minutes of the marked time will result in a failing
grade. We do not expect complete or even compiling solutions at this point.

Suggestion: Set an alarm so you don’t forget.

Final submission: When you are done with the exam, you must send in your solutions through
“Final submission part I” and “Final submission part II”. If you have attempted Part III you
must also make a submission to “Final submission part I11".

e Your solution(s) to part I should be source code files (.cc, .cpp, .h, .hh, .hpp).

e Your solution to part IT should be a PDF document.

 Your solution(s) to part III should be one source code file per assignment and one PDF
for your answers to all the questions presented in the assigments.

e The final submission must be submitted no later than 14:00.

When you have submitted your final submission in Lisam, make sure to send all of your files to
christoffer.holm@liu.se and klas.arvidsson@liu.se by E-mail. This includes any .doc,
.docx, .odt and .txt files. The subject line must be COURSE: Exam 2020-08-19 where COURSE
is replaced with either TDDD38 or 726G82.

Submitting through Lisam: Attach the files to your submission and press the submit button
(it doesn’t matter which one if there are multiple). You can select multiple files by holding Ctrl
and clicking the files you want to attach.

You will be prompted “Do you really want to submit?”. Double check that you have everything,
and then press “Submit” on the popup.


https://studentsubmissions.app.cloud.it.liu.se/Courses/TDDD38_2020VT_OX/submissions
https://lisam.liu.se

TDDD38 Page 3 of 9 2020-08-19

You will then see a popup: “You will be redirected automatically when everything is finished”
Once that has finished you will redirected to the submission page. You should also get a
confirmation E-mail.

Agree to the examination rules

Before starting to work on Part I you must submit the message “I have read and understood
the rules of the examination, and I swear to follow those rules” to the submission called
“2020-08-19: Examination rules” in Lisam (see above).

Do this before starting the exam!



TDDD38 Page 4 of 9 2020-08-19

Part 1

Introduction

This part of the exam deals with practical programming skills. You will discuss your solution
to this part in part II of the exam.

Note that your code should compile on Ubuntu 18 with g++ version 7 or later with the flags:
-std=c++17 -Wall -Wextra -Wpedantic. You can test your code on ThinLinc if you don’t
have access to Ubuntu 18 or g+-+ version 7 on your local machine.

The problem

In quiz.cc there is a given program. This program implements a small terminal based quiz
system. This system allows the programmer to create questions that can then be presented to
the user. It will then check the answer given by the user and calculate scores.

In this system there are different types of questions: there are multiple choice questions (two
versions, one where only one of the alternatives is correct and one where multiple answers are
correct) and free form questions where the user simply types in the answer manually.

Unfortunately this system doesn’t really utilize the full power of C++ since it is written by
someone who isn’t particularly comfortable with the language. Your job is to demonstrate to
the author how this system can be improved by using modern C++. This is done by introducing
classes, polymorphism, the STL and templates.

The focus for this assignment is for you to demonstrate that you can apply the language features
discussed during the course to make the code better in any way you see fit. Some examples
of concepts you could focus on when making the code better are: readability, maintainability,
usability, code safety and efficiency. Note that this list is for inspiration, it is not a requirement.
You don’t have to use these concepts if you find other ways to improve the code. Just make
sure to clearly discuss your intentions in part II.

The assignment

You must identify suitable parts of the given code that can be improved, and then demonstrate
how to make those improvements. Your improvement must involve:

o STL Algorithms or STL containers (you choose which one you want to focus on)
e (lasses and Polymorphism
e Templates

For each concept you must demonstrate at least one place in the code that can be improved by
introducing/using that concept.

Note: It is not required that you rewrite everything. It is enough that you rewrite parts of the
code to demonstrate your ideas and understanding.



TDDD38 Page 5 of 9 2020-08-19

It is up to you to show that you understand these concepts. Remember that more advanced
features does not necessarily imply better code.

Note: If you have trouble showing all of these concepts in one solution, you are allowed to
create different solutions based on the given code. If you do this, place each solution in its own
separate file and write a comment that describe which concepts you are covering in that file.

Suggestions and hints

Suggestion: Try to quickly analyze which parts will be easier and which will be harder to
rewrite and plan your time accordingly. If you want to try for higher grades our recommenda-
tion is that you are done with Part I and Part II within 3 to 4 hours.

Hint: There are a lot of comments in the code. Some of these comments contains a wishlist.
These are improvements that the author would like the code to contain. You are free to use
these whishlists as inspiration, but there may be other parts you wish to improve.

Hint: Some parts might be improved by completely rewriting them. Your solution doesn’t
have to use code from the given file, as long as your solution performs the same work as the

given program but in a better way.

There are more hints and suggestions in the given file.



TDDD38 Page 6 of 9 2020-08-19

Part 11

Rules

The answer to this part must be written as a text. You need to use a program where you can
insert headers, text and code examples. You can for example use Microsoft Word or OpenOffice.
It is also OK to use a pure text format (for example markdown). The important part is that the
formatting clearly separates headers, text and code examples (and that you can export it as a
pdf). The entire text should be possible to read and understand without reading your solution
to part I. This means that you have to insert relevant pieces of code from your solution into the
document. You document should be around 500 to 2000 words long.

The assignment

You must answer ALL of the following questions about your solution to part I. Remember to
demonstrate suitable usage of these concepts in each question. More advanced features does
not necessarily imply better code. It is recommended that you write one header per question.

1. Describe the class hierarchy of your solution. You should do one of these:

o describe the classes and their relationships textually

o draw a UML diagram (photos of hand drawn diagrams or digitally drawn diagrams
are both OK)

2. Discuss how and why your usage of polymorphism is better than the given code. Describe
the reasoning behind each virtual function, each class and the encapsulation. Discuss how
these things improve the design of the program.

3. Describe a piece of your solution where you use templates and explain why you made
those changes. If you have multiple places in the code to choose from, it is up to you to
describe the one you think demonstrates the usage of templates best.

4. Describe a piece of your solution where you use STL algorithms or STL containers and
explain why you made those changes. If you have multiple places in the code to choose
from, it is up to you to describe the one you think demonstrates your knowledge best.



TDDD38 Page 7 of 9 2020-08-19

Part 111

Introduction

You only have to write this part if you want a higher grade. However it can also
help you compensate any potential flaws in part I and/or part II.

In this part two programming assignments are presented, each paired with a question.
e To get a grade 4 you need to solve one of the assignments.
e To get a grade 5 you need to solve both assignments.

We count a solution as solved if you have fulfilled the requirements specified in the assignment
and if you have answered the question.

Write your answers to the questions in a separate document that you then submit as a PDF
with your code to “2020-08-19: Final submission part III”. Note that your answers can be short
as long as they actually answer the question.

Note: We don’t expect perfect solutions. If you are close enough we might still grade the
assignment as solved. So if you feel that you are close to a solution you can still submit it. But
if you do, make sure to write comments on what you have tried and why you think it didn’t work.

Note: Any solution that doesn’t compile will not be considered solved. So make sure to
comment out any code that causes compile errors.



TDDD38 Page 8 of 9 2020-08-19

Assignment 1

In this assignment you will create a function merge that takes two std::tuple objects and
merge them into one std::tuple. What this means is that given the tuples { 1, 2.5 } and
{ 4, "hello"} the merge function should return the tuple { 1, 2.5, 4, "hello"}.

In this assignment there are some restrictions:
e You must solve this assignment with the help of std: :integer_sequence.
e You are not allowed to use std::tuple_cat.

» merge must take exactly 2 parameters both of which being std: : tuple. However, creating
helper functions with more parameters are OK.

In assignment1l.cc there are a few testcases given.

Hint: Make merge into a variadic template where the template parameters are the types of the
tuples, this way you have access to the type list of each of the two tuples.

Hint: index_sequence_for might be useful.
Question: Why can we access fields in tuples either by type or by index when we use the

std: :get function? Are there any problems that is solved in one of the methods that the other
one cannot handle?



TDDD38 Page 9 of 9 2020-08-19

Assignment 2

In the <type_traits> header there are a lot of useful utilities for retrieving type information
during compile time. One of these is std: :common_type which takes two types and return the
type that can best represent values from both types. For example, the most common type of
int and double is double, since double can store integers, but not the other way around.

In this assignment you are going to create the much less useful (maybe even completely use-
less) sister trait uncommon_type which does the complete opposite. Of the two types passed
to it, uncommon_type will return the one that cannot represent values of both types. So if
std::common_type<int, double>::type is double, then the complete opposite should be re-
turned from std: :uncommon_type<int, double>::type, namely int.

In order to implement it you can take the result of std: :common_type and simply use the type
that wasn’t returned. In order to do this std::is_same and std: :conditional might be useful.

Note that uncommon_type should be a struct that takes two template parameters, T1 and T2.
The “returned” type should be “stored” in the type alias uncommon_type<T1, T2>::type.

In assignment?2.cc there are some testcases given.

Question: What is the difference between std::conditional and std::enable_if? Why do
you think the STL contain both of these similar type traits?



