
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2025-03-20

Computer examination in
TDDD38 Advanced Programming in C++

Date 2025-03-20

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT2

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be passed in separately from the code.



TDDD38 Page 2 of 9 2025-03-20

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/ as well as
a local mirror of it with a working search function, but only through the desktop icon “Web
access”. Do note that not everything on cppreference will be available (in particular the pages
under the “Language” section will be blocked). If you are unable to access a page that should
be available (it might have been blocked by mistake) then you can send a message through the
exam client.



TDDD38 Page 3 of 9 2025-03-20

1. [5p]The Hamming distance is a way to measure the distance between two strings. In particular
it is defined as the number of positions in both strings that contain different characters. If
one string is longer than the other then each additional character will add one to the total
distance.
Example: Suppose we have the strings "crate" and "bribe". Here we see that the first,
the third and the fourth positions differ, which gives us a Hamming distance of 3.
Example: Take the strings "pass" and "taster". We see that the two strings differ at
the first and the fourth positions. Additionally, there are two extra characters in "taster"
(i.e. the last two), which gives us a total Hamming distance of 4.
In this assignment you will implement a program that takes a word from a user and finds
the five closest words found in wordlist.txt with respect to Hamming distance.
Implement the following steps:

1. Implement the function hamming_distance() which takes two strings and returns the
Hamming distance between them.
Hint: To calculate the Hamming distance between two strings of equal length you can
view the operation as an inner product where the product/multiplication operation is
replaced with the inequality operator.

2. Read all words in wordlist.txt into an appropriate container called wordlist.
3. Read a word from std::cin into the variable word.
4. Find the top five words in wordlist with the smallest Hamming distance to word. If

there are multiple words with the same Hamming distance then their internal order
doesn’t matter.

5. Print the top five words to std::cout, one word per line.

Some example outputs are given in given_files/program1.cc. Note that your output
may differ slightly since we do not care about the internal ordering between words that
have the same Hamming distance from word.
Requirement: In this assignment you may not use loops, std::for_each, std::transform
or recursion. You must use STL algorithms and containers.



TDDD38 Page 4 of 9 2025-03-20

2. [2p]Discussion: What is pointer (or iterator) invalidation in the context of containers? Give
an example of when it can occur. Explain why this might cause issues. Are there any
containers that are preferred if we want to avoid pointer invalidation?



TDDD38 Page 5 of 9 2025-03-20

3. [4p]If you passed the midterm test then skip this assignment (you get full points).
In this assignment you will write a type trait called Reverse that takes one template
parameter pack and produces a new template parameter pack which is in the reverse order
of the original pack. The result should be given as a type alias named type.
In given_files/program3.cc the helper struct template Pack is given. Pack will be used
to represent template parameter packs.
Requirement: You must use partial template specializations in your solution.
There are testcases given in given_files/program3.cc.
Hint: One way to implement this is to make a helper struct template called Helper that
takes two template parameters T and U and then implement the following specializations:

• Helper<Pack<T, Ts...>, Pack<Us...>> which moves T from the beginning of the
first pack to the beginning of the second pack and then recursively use itself again.

• Helper<Pack<>, Pack<Us...>> which sets type to Pack<Us...>.

The initial case for this helper would be that the first template parameter is of the form
Pack<Ts...> and the second template parameter is Pack<>.



TDDD38 Page 6 of 9 2025-03-20

4. [3p]Discussion: Explain what overload resolution is. Your explanation must describe how
overload resolution deals with multiple functions of the same name. In what order does
the compiler prioritize candidate functions? Does the data type of parameters matter?
Does the data type of return types matter? Does templates parameters matter? How does
implicit type conversion plays into it?



TDDD38 Page 7 of 9 2025-03-20

5. [4p]Sorting is a staple in computer science. It is without a doubt something commonly taught
and discussed. The STL library provides the ever useful std::sort() for all our sorting
needs... or does it?
Notice that std::sort() requires the iterators of the container to be random access, which
means it doesn’t work for all containers. But today that changes: in this assignment you
will provide a sorting function that “works” on most STL containers (with the exception of
container adaptors), using a very liberal definition of “works”.
You must implement a function template sort() that takes two type template parameters:
Container which represents an arbitrary STL container (including C-arrays), and Comp
which represents the type of a callable object used as a comparator for the sorting operation.
Note that Comp should have std::less as its default type (i.e. if the type cannot be
deduced).
Hint: std::less takes the value type of Container as its template parameter.
Additionally sort() takes two function parameters: container which is an lvalue reference
to a Container object, and comp which is an object of type Comp. Note that if the comp
parameter is omitted by the caller, then it should be set to a default-initialized Comp object.
The sort() function should return nothing.
There are in partiular two types of STL containers that cannot be sorted using std::sort():

• Containers that have a member function called sort() (which takes a callable com-
parator object as an optional parameter).

• Associative containers (i.e. std::map, std::set and all their variants). The main
reason these cannot be sorted is because the order is not possible to change by the
user. Therefore we will count these as “already sorted”, meaning nothing is done for
them (however, it should still be possible to call sort() on them).

Use SFINAE (or C++20 concepts) to implement sort() as described above. There are
testcases given in given_files/program5.cc which should work without modifications.
Hint: To implement sort() you need to handle these three cases (appearing in priority
order), preferably by making three overloads of a helper function:

1. If Container is an associative container, then do nothing. You can detect whether it is
an associative container by checking for the existence of the type Container::key_type.

2. If the container has a member function called sort() which takes comp as a parameter,
then use that to sort the container.

3. Otherwise, use std::sort(). Notice that you can, and must, make this case work for
C-arrays as well.

Note: For STL containers there is no overlap between any of these cases, but you should
still induce the priority defined above to increase the likelyhood that it works for custom
containers as well.



TDDD38 Page 8 of 9 2025-03-20

6. [2p]Discussion: What is placement new? How is it different from new? When should it be
used?



TDDD38 Page 9 of 9 2025-03-20

7. [5p]During the course we have discussed sum types and how they can be used to somewhat
emulate dynamic typing. However, one of the drawbacks we found was that we always have
to bring our dynamically typed objects into the statically typed domain once again if we
want to perform any operations.
In this assigmment we will explore how one could go about designing a class that more
closely mimics languages such as Python or Javascript.
Create a class called Variable which represents a variable that can store numbers (double),
text (std::string) and lists (std::vector<Variable>). The class only has one data
member: a std::variant called value.
Note that all exceptions must be of the exception type Variable_Error which is given in
given_files/program7.cc. The Variable class must implement the following functions
and operators:

• A constructor for each of the three types that a variable can contain. These should
simply set the initial state of the value member.

• An assignment operator for each of the three types that a variable can contain.
• operator+(other) which has different behaviour depending on what is currently

stored in *this and other.
– If they are storing different types then an exception should be thrown with an

appropriate message.
– If both store numbers then it should return a new variable containing the sum of

those two numbers.
– If both store text then it should return a new variable that contains the concate-

nation of the two strings (i.e. how addition usually behaves for strings).
– If both store lists then it should return a new variable containing the two list

concatenated together (by starting with all elements of the first list and then
inserting all the elements of the second list).

• operator-(other) which should only work if both *this and other are storing num-
bers. If they don’t, throw an exception with an appropriate message.
This operator should return a new variable containing the difference of the two num-
bers.

• A size() function that returns an std::size_t. This function throws an exception
for variables containing numbers, but for text and lists it should return the number of
characters/elements stored in the text/list.

• A print() function that takes an arbitrary std::ostream and prints the content of
the variable to that stream.
If the variable contains a number, we simply print that number.
If the variable contains text, then print the text surrounded by ".
Finally, if the variable contains a list, then call print() on all the elements in the
list. The printed elements should be separated by spaces. The whole list should be
surrounded by [ and ] (see testcases in given_files/program7.cc for examples of
the format).

There are testcases given in given_files/program7.cc. All of them should pass without
any modifications.


