
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2025-01-15

Computer examination in
TDDD38 Advanced Programming in C++

Date 2025-01-15

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT2

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be passed in separately from the code.



TDDD38 Page 2 of 9 2025-01-15

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/ as well as
a local mirror of it with a working search function, but only through the desktop icon “Web
access”. Do note that not everything on cppreference will be available (in particular the pages
under the “Language” section will be blocked). If you are unable to access a page that should
be available (it might have been blocked by mistake) then you can send a message through the
exam client.



TDDD38 Page 3 of 9 2025-01-15

1. [5p]If you passed the midterm test then skip this assignment (you get full points).
In this assignment you will write a type trait that takes two template parameter packs and
produces a new parameter pack which is the interleaving of the two parameter packs.
In given_files/program1.cc the helper struct template Pack is given. Pack will be used
to represent parameter packs.
An interleaving of two packs (Left and Right) is the parameter pack where every other
type comes from Left and every other comes from Right.
Example: Suppose Left = { int, float } and Right = { unsigned, double }, then
their interleaving would be { int, unsigned, float, double }.
If one of Left or Right is larger than the other, then we interleave elements as long as both
of them have values and after that we just append the rest of the larger one to the result
(see testcases for examples of this).
To implement interleaving you must make the following partial specializations of the given
class template Interleave (each of which defines a type alias called type that contains the
resulting interleaving):

1. When Left = Pack<LeftTypes...> and Right = Pack<RightTypes...> then set the
type alias type to a Pack that contains the first type in LeftTypes followed the first
type in RightTypes, with the interleaving of the rest of the types in LeftTypes and
RightTypes appended to the end.

2. When one of Left or Right is an empty pack then set the type alias type the non-
empty pack.

3. If both Left and Right are empty packs, then type is Pack<>.

There are testcases given in given_files/program1.cc.
Note: To implement specialization #1 you can use the given Append class template to
append one Pack<> to another.
Example: The way you use append is like this:
Append<Pack<int, float>, Pack<bool, double>>::type
which will be the type:
Pack<int, float, bool, double>.



TDDD38 Page 4 of 9 2025-01-15

2. [3p]Discussion: What is a fold-expression? Demonstrate the syntax, and explain how it is
related to variadic packs. Discuss how problems that are solved using fold-expressions can
be solve without using fold-expressions. Give code examples for how to solve something
with and without fold-expressions.



TDDD38 Page 5 of 9 2025-01-15

3. [4p]The file given_files/products.txt contains a list of products being sold in a store. Each
product consists of a name (without any whitespace characters), a price and the stock
(how many of that product is currently available in the store). There is a given struct in
given_files/program3.cc that will be used to represent these products in the program.
In this assignment you must implement the following steps:

1. Read each product from products.txt into an std::vector<Product> called products.
2. Order the vector so that it is partitioned into two parts: the first part contains all

products that are in stock (i.e. products where stock is greater than 0), and the
second part contains all products that are not in stock.
Each part must be internally sorted in such a way that the most expensive product
appears first and the cheapest one is last.
Note: The two parts should still be stored in the products vector, so you must keep
track of the boundary between the two parts.

3. Print the total value of all products currently present in the store (i.e. take the sum
of price * stock for each product).

4. Print the two parts according to the expected output in given_files/program3.cc.

Requirement: The only container that should be present in your program is the products
vector, no other containers are permitted.
Requirement: In this assignment you may not use loops, std::for_each, std::transform
or recursion. You must use STL algorithms and containers.
Hint: To do IO operations, define the two operators operator<< and operator>> for
Product. Note that these operations must reside in the std namespace. You can then use
the stream iterators with Product objects.



TDDD38 Page 6 of 9 2025-01-15

4. [2p]Discussion: Discuss the differences between std::list and std::deque. What are the
advantages and drawbacks of each container in comparison to each other? When would you
use either of them instead of std::vector?



TDDD38 Page 7 of 9 2025-01-15

5. [5p]In this assignment you will implement an output iterator (https://upp.gitlab-pages.
liu.se/cppreference/en/cpp/named_req/OutputIterator.html) which inserts values into
a container in sorted order. The iterator is called Sorted_Insertion_Iterator and takes
two template parameters, Container and Comparator.
Container represent a container type that has an .insert() function which takes an
iterator and a value (you do not need to check wheter this assumption is met).
Comparator represents a callable type (i.e. a function, function object or lambda function)
which has the following signature:

bool(value_type const& left, value_type const& right)

where value_type is the value type of Contaier. You do not have to check for this
assumption either.
Sorted_Insertion_Iterator will store a reference to some container of type Container
and a Comparator object called comparator which the user optionally will specify in the
constructor.
Most operations of the iterator will do nothing, the central operation is operator= which
will take an object of type value_type and insert it into the referenced container in sorted
order (according to the comparator). If comparator(left, right) is true then left
should appear before right in the sorted order.
Note: Since the iterator should work for as many containers as possible, the insertion
should be implemented as a loop which finds the first position for which comparator()
returns false and insert the value at that position.
Comparison between iterators are done by checking the addresses (pointers) of the contain-
ers each iterator refers to.
You must also implement a function template called sorted_inserter() that takes the
same template parameters as Sorted_Insertion_Iterator. This function should also give
Comparator the default-type std::less<value_type>. This function template takes two
parameters, a Container reference and an (optional) Comparator (if left out it should be
set to a default-initialized Comparator).
Note: You can skip the required type aliases for iterators in this assignment, however the
value_type can be useful to have.
There are several testcases given in given_files/program5.cc.

https://upp.gitlab-pages.liu.se/cppreference/en/cpp/named_req/OutputIterator.html
https://upp.gitlab-pages.liu.se/cppreference/en/cpp/named_req/OutputIterator.html


TDDD38 Page 8 of 9 2025-01-15

6. [4p]In this assignment you will implement a class template called Optional which takes one
template parameter T which is an arbitrary data type.
The idea is that Optional has two main states: either it stores a value of type T or it is
empty. The user can then check whether the Optional has a value or not, and if it does
have a value the user can retrieve said value.
Optional must be implemented as either:

• a tagged union, i.e. a class that has two union fields (a T field and a bool field which
is true if the Optional is empty) stored in an anonymouse union.

• A char array which is large enough to store a T object. Remember to use std::launder()
when casting the pointer to a T pointer.

Optional must also contain a bool value called valid which is only true if a value of type
T is currently being stored.
Optional should contain the following:

• A default constructor to initialize an empty Optional.
• A constructor that takes a T value and stores it in the Optional.
• A copy constructor.
• A destructor.
• A copy assignment operator.
• An operator= that takes a T value and assigns it to the Optional.
• A clear() function that does nothing if the Optional is empty, and otherwise it calls

the destructor of the stored T value and then makes the Optional empty.
Hint: You can use std::destroy_at() to call a destructor in a general context.

• A is_valid() function that returns true if the Optional contains a value and false
if it is empty.

• A get_value() function that returns a reference to the stored value (if the value
doesn’t exist then it is undefined how this function behaves).

Note: Any usage of std::optional will result in zero points.
Requirement: You may only create a new value inside the Optional if it is empty, oth-
erwise you must assign any new values to the existing value using the assignment operator
of T.
Requirement: You may not allocate any memory in this assignment, you must instead
use placement new to construct objects in already existing memory (i.e. members inside
the Optional class).
Requirement: There may be no memory leaks or memory issues in your solution.
There are testcases given in given_files/program6.cc, they should not be modified.



TDDD38 Page 9 of 9 2025-01-15

7. [2p]Discussion: What is a forwarding reference? Give an example of a forwarding reference
and explain how we know it is a forwarding reference and not another type of reference.
How is std::forward() related to forwarding references?


