
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2024-08-22

Computer examination in
TDDD38 Advanced Programming in C++

Date 2024-08-22

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT2

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be passed in separately from the code.



TDDD38 Page 2 of 9 2024-08-22

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: Unfortunately the cppreference search
engine of choice, DuckDuckGo, seem to employ some sort of DOS protection, blocking our exam
proxy after some time. The search functionality may work for some time if you do it through
cppreference. You cannot search on DuckDuckGo.



TDDD38 Page 3 of 9 2024-08-22

1. [5p]For certain calculations it would be particularly useful to be able to represent and iterate
all real values in an interval up to a specified numerical precision (i.e. up to a specified
number of digits), for example: 0.01, 0.02, 0.03, ..., 0.99, 1.00 with two digits of
precision.
In this assignment you will implement a random access iterator (https://en.cppreference.
com/w/cpp/named_req/RandomAccessIterator) called Interval_Iterator which takes
a non-type template parameter called precision of type std::size_t. The template
parameter precision represents how many digits of precision each number in the in-
terval has. This iterator must fulfill all the operator requirements specified for a ran-
dom access iterator. It must also provide the member types described here: https:
//en.cppreference.com/w/cpp/iterator/iterator_traits, you must determine what
type each type alias refers to.
Example: Suppose we have precision 3, and the interval [0.015, 0.020] then our iteration
will result in the following iteration order: 0.015, 0.016, 0.017, 0.018, 0.019, 0.020.
This means that the precision decides what the “next” number is, because if we instead had
precision 4 we would get 0.0150, 0.0151, ..., 0.0198, 0.0199, 0.0200.
See given_files/program1.cc for testcases. Note that these are not necessarily enough
so you should probably write some own testcases as well.
Requirement: T iterator must store the current value as a long long rather than double
to make sure that the accuracy is preserved. Suppose we have a precision of 4 and the
current value in the iterator is 1.2647 then store the long long value 12647, and when
dereferencing the iterator we divide 12647 with the factor 104 i.e. 10000 to get 1.2647. To
avoid repeated calculation you must calculate the factor once, during compile-time. This
means you also have to implement either a constexpr function or a struct template that
calculates 10N for the positive integer N .
Note: double accumulates rounding errors, so try to avoid working with double as much
as possible in the assignment. Ideally it should only ever deal with double when returning
from the dereference operator only.
Note: This iterator allows for many interesting approximation techniques. For example,
an iterable interval would allow us to calculate inverse values of monotone functions over a
specified interval, i.e. inverses of functions that is either always increasing in value or always
decreasing in value. If f(x) is a monotone function (i.e. increasing or decreasing) over the
interval [a, b] then we can find an approximate solution x to the equation f(x) = y, where
y is some specified value, by performing a binary search over [a, b]. See the final testcase
in given_files/program1.cc to see how this technique together with the STL algoritm
std::lower_bound (https://en.cppreference.com/w/cpp/algorithm/lower_bound) is
used to solve the equation

sin(x) = 0.5

where x is somewhere between 0 and π.
Note: The testcases uses an STL algorithm, but you don’t have to use any in your solution.
This assignment deals with iterators and templates, NOT STL.

https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator
https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator
https://en.cppreference.com/w/cpp/iterator/iterator_traits
https://en.cppreference.com/w/cpp/iterator/iterator_traits
https://en.cppreference.com/w/cpp/algorithm/lower_bound


TDDD38 Page 4 of 9 2024-08-22

2. [4p]If you passed the midterm test then skip this assignment (you get full points).
The negation operator is well-defined for signed integers (invert the sign), bit sequences
(flip each bit) and boolean values (apply the not-operator), but there are types where it is
not well-defined at all. Examples of such types would be std::string or containers.
In this assignment we will define negation of:

• a std::string to mean reversing the order of the characters.
• a container to mean recursively negating each of its elements.

Your assignment is to implement a function template called negate() that takes an lvalue
reference to a value of arbitrary type T and negates it according to the definitions specified
above. Notice that what is meant by negation varies depending on properties of the type
T. Specifically you need to handle four cases (in this order):

1. If T is a bool then apply the not-operator (operator!).
2. If T is a signed arithmetic type (e.g. float, int, etc.) then it should flip the sign of

the value. Hint: https://en.cppreference.com/w/cpp/types/is_signed.
3. If T is a container with char as its value type then it should reverse the elements

in the container. Hint: https://en.cppreference.com/w/cpp/types/is_same and
https://en.cppreference.com/w/cpp/algorithm/reverse.

4. If T is a container of arbitrary value type, then it should iterate all of the elements and
call negate on each of them. Hint: All containers have iterators.

5. If none of the cases above apply, then do bitwise negation on the value, i.e. do
value = ~value (note the “tilde” character, which is NOT a dash).

Requirement: Several of these cases can potentially overlap with other cases, so it is
important that a priority is induced. For example: T = std::string fulfills case #3 and
case #4, while #5 overlaps with every case.
There are testcases given in given_files/program2.cc, they all should work without mod-
ification.
Hint: To implement the detection of the different cases, use SFINAE or concepts/requires-
clauses for different overloads of a helper function. To induce priority you might want to
add some additional parameters.
Requirement: The negate() function must take its parameter by-reference and modify
the passed in value. It should NOT create a new value. It should then return the parameter
as a reference to make the function easier to test.

https://en.cppreference.com/w/cpp/types/is_signed
https://en.cppreference.com/w/cpp/types/is_same
https://en.cppreference.com/w/cpp/algorithm/reverse


TDDD38 Page 5 of 9 2024-08-22

3. [2p]Discussion: What does the the virtual keyword do, and what reason do you see for C++
forcing you to explicitly mark functions as virtual instead of making all functions virtual
by default? Make sure that you explain any costs that you mention.



TDDD38 Page 6 of 9 2024-08-22

4. [3p]Discussion: What different explicit type casts are there in C++? Describe at least three
of them. Discuss what each cast does and how they differ from each other. Discuss why
you think the casts where separated into different operations rather than just using C-style
casts.



TDDD38 Page 7 of 9 2024-08-22

5. [5p]In modern computer science parallelism is of high importance. Being able to run multiple
tasks at once is key for efficiency. Many times there will be bursts of tasks running and
then some down-time where the CPU can power down. In given_files/tasks.txt there
is a list of time intervals when tasks will be running. Your job is to find when bursts of
tasks occur, i.e. longest intervals when CPU is not idle.
Requirement: In this assignment you may not use loops, std::for_each or recursion.
You must use STL algorithms and containers.
In given_files/program5.cc there is type alias of std::pair<int, int> called Task as
well as some relevant operations.
In given_files/program5.cc there is a concrete example for how this is done, which you
can look at while reading the following step-by-step instruction for how to implement this
program:

1. Read each task from tasks.txt into a vector of Task elements called tasks.
Hint: Overload the stream operators for Task in the std namespace and then use the
istream iterators.

2. Sort all tasks using the default comparison operator.
3. Once the tasks have been sorted we can build all partial bursts by partially summing

over all tasks using the merge_or_split() function as the addition operator. This
works as follows:
(a) Pick the first task as the current burst.
(b) If the next task overlaps the current burst, then extend the burst so that it covers

that task.
(c) If the next task does not overlap, then set the burst for the next iteration to

exactly overlap the task.
Since we are doing a partial sum, the result of each iteration will be saved, so we can
later find all independent bursts of the CPU. Save all partial results directly in tasks.

4. To make sure that we can find the bursts we sort the partial bursts based on their start
points (in ascending order), and secondarily (if the start points are the same) based
on the end points. This sorts the bursts according to their start points but ensuring
that the first burst in each sequence is the longest one (i.e. the one that cover the
most tasks).

5. Remove all but the longest bursts that share the same start point (i.e. remove all
duplicates when we only check the start point).

6. Print all the remaining elements from the tasks vector.



TDDD38 Page 8 of 9 2024-08-22

6. [2p]Discussion: What is the difference between using parentheses when initializing a variable,
and using curly braces? Give a list of what steps each initialization tries. Are there any
other differences that are not covered by the steps?



TDDD38 Page 9 of 9 2024-08-22

7. [4p]In meta-template programming variadic templates are used as lists of datatypes. When
doing things relating to this, it can be very helpful to implement operations that we
commonly associate with lists of values. In this assignment you will implement a type
trait called Count_Unique that takes a variadic template of arbitrary types and has a
static constexpr variable called value that contains the number of unique types that
occured in the passed in variadic pack.
Example: The following expression Count_Unique<int, float, float, int>::value
should return 2, one for int and one for float.
In given_files/program7.cc there are a few testcases given as well as a helper struct
called Pack that can be used to capture variadic packs as a single type.
Hint: To implement this make a type trait called Make_Unique that takes a variadic pack
and has a type alias called type that contains a Pack of all the unique types that occured
in the passed in variadic pack. We can then, in the implementation of Count_Unique use
the static member size inside the Pack that Make_Unique produces to get the number of
unique types.
The algorithm for checking unique elements in non-sorted lists can be implemented as
follows (pseudocode):

List input { ... };

List make_unique(List result , size_t index)
{

if (index >= input.size()) // if we've reached the end
return result;

else if (result.contains(input[index]))
// this value has already been added to 'result'
// so we just move on
return make_unique(result , index + 1);

else
{

// this is a new value , so we add it to 'result'
// before we move on
result.append(input[index]);
return make_unique(result , index + 1);

}
}

To translate this into the type trait Make_Unique, take a normal type template parameter
that is meant to contain a Pack of all the types that has currently been found. Notice
that to extract the types from a Pack you have to make a specialization which matches
Pack<Ts...> where Ts is a variadic pack.
You will likely also have implement a way to find whether a Pack contains a particular type.
Note: You don’t have to do it as described in the hint if you find another way to do it.
Hint: The type trait std::conditional can be useful (https://en.cppreference.com/
w/cpp/types/conditional).

https://en.cppreference.com/w/cpp/types/conditional
https://en.cppreference.com/w/cpp/types/conditional

