LINKOPING UNIVERSITY

Department of Computer and Information Science

Software and Systems

Christoffer Holm 2024-05-31

Computer examination in

TDDD38 Advanced Programming in C++

Date 2024-05-31 Administrator
Time 813 Anna Grabska Eklund, 28 2362
Department IDA
Course code TDDD38 Teacher on call
Exam code DAT2 Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
Examiner student client.
Will only visit the exam rooms for system-
Klas Arvidsson (klas.arvidsson@liu.se) related problems.

Allowed Aids (tillatna hjdlpmedel)

An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading

The exam has a total of 25 points.
0-10 for grade U/FX

11-14 for grade 3/C

15-18 for grade 4/B

19-25 for grade 5/A

Special instructions

o All communication with staff during the exam can be done in both English and Swedish.

e Don’t log out at any time during the exam, only when you have finished.

o Given files are found in subdirectory ~/Desktop/given_files (write protected). The
exam will be available as a PDF in this directory at the start of the exam.

o Files you want assessed must be submitted via the Student Client.

o When using standard library components, such as algorithms and containers, try to chose
"best fit“ regarding the problem to solve. Avoid unrelated /unnecessary computations and
unnecessary data structures.

e C style coding may cause point reduction where C++ alternatives are available.

e Your code should compile. Commented out regions of non-compiling code may still give
some points. Resource leaks and undefined behavior is important to fix.

o Questions marked as Discussion is meant to be answered textually (txt or PDF). The
answers to these questions must be passed in separately from the code.

TDDD38 Page 2 of 9 2024-05-31

Available commands

e++20 is used to compile with “all” warnings as errors.

w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.

valgrind --tool=memcheck is used to find memory leaks.

C++ reference

During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.

TDDD38 Page 3 of 9 2024-05-31

1. Unix-style functional composition is an abstraction that allows us to create chains of func-
tion calls without having to manually pass the result of one function to the other. For
example, instead of doing:

fun3 (fun2 (funi1(1)))

functional composition allows us to use this syntax instead (similar to unix terminals, or
C++20 ranges):

payload(1) | funl | fun2 | fun3

This type of constructing will henceforth be referred to as a composition chain.

In this assignment you will implement a small framework for dealing with composition
chains. To do this you must implement the following:

o A class/struct template called Payload that represent a value being passed through
a composition chain. It contains a data member of arbitrary type T, and an implicit
conversion operator from Payload<T> to T (i.e. operator T()).

e An ordinary function template payload() that takes a parameter of arbitrary type
and returns a Payload<T> object containing the passed in function parameter.

Requirement: The parameter to payload() must be a forwarding reference.

e An operator| () that takes a Payload<T> object and an arbitrary callable object of
arbitrary type Callable. It should return a Payload containing the value returned by
passing the payload to the callable object. Note that the type returned from Callable
can be different from the type passed in as a parameter.

Note: We assume that the callable object takes exactly one parameter which is of the
type T.

Hint: You can either use decltype to deduce the return type OR the type trait
std: :invoke_result.

In given_files/programl.cc there are a few testcases that should produce no output if
everything is correct.

TDDD38 Page 4 of 9 2024-05-31

2. If you passed the midterm test then skip this assignment (you get full points). [5p]

It is quite common to have containers that store key-value pairs as std::pair (https:
//en.cppreference.com/w/cpp/utility/pair) objects. It is known that one can iterate
through such pairs in a concise way using range-based for-loops and structured-bindings,
ie.

for (auto&& [key, value] : v)
{
// 'key' contains the key
// 'walue' contains the wvalue

}

But if we only want to iterate one of them (the keys for example), then we have an unused
variable and that isn’t the best practice.

In this assignment you will implement a function template called iterate () that solves this
problem. iterate () takes two iterators and a callable object and applies the callable object
to each element in the iterator range. The “twist” however is that based on the parameters
of the callable object it will either iterate the keys, values or both for those iterators that
have std: :pair as their element. See given_files/program?2.cc for examples on how this
function is used.

To implement this, do the following:

o Implement iterate() so that it iterates through each element, and calls apply () (see
below) on the current element and the callable object.

e Implement a helper function called apply () that takes an element e and a callable
object callable (and potentially more parameters determined by you). This function
have several overloads:

1. If the element e is an std: :pair and callable can be called with p.first as its
only parameter, then do that.

2. If the element e is an std::pair and callable can be called with p.second as
its only parameter, then do that.

3. If the element e is an std::pair and callable can be called with p.first and
p-second as its two parameters, then do that.

4. If the e is not a pair, then just call callable(e).

Note that some of these cases may overlap, for example if the std: :pair has the same
type for both fields, in those cases the priority of the overloads is given be the order
above.

There are testcases given in given_files/program?2.cc.

Hint: Use SFINAE or C++20 concepts to detect the various cases of apply ().

https://en.cppreference.com/w/cpp/utility/pair
https://en.cppreference.com/w/cpp/utility/pair

TDDD38 Page 5 of 9 2024-05-31

3. Discussion: Explain what an zvalue is. When does it arise? Give examples. Discuss why [2p]
xvalues were introduced to the language. How does the classification of xvalues help us
produce higher quality code?

TDDD38 Page 6 of 9 2024-05-31

4. In this assignment the user will enter a text with multiple lines (they press ctrl+D when [5p]
they are done). Your job is to report whether there are any words that appear on every
line (ignoring blank lines).

In given_files/program4.cc a few suggestions for steps to take are given.

Note: The user may enter words in any order and may repeat multiple words per line. We
only care about how many unique words there are per line and if there are any words that
appear on every non-empty lines. Words on a line are separated by an arbitrary number of
whitespace characters (except newlines), and lines are separated by newline characters.

Note: The user may enter blank lines which are ignored by the program.

Note: Your program is allowed to be case sensitive (i.e. uppercase and lowercase letters
are treated as separated letters).

Requirement: This assignment must be solved using STL algorithms and containers. You
may NOT use any loops, recursion or std: :for_each.

Hint: Recall that std::istream_iterator<T> (https://en.cppreference.com/w/cpp/
iterator/istream_iterator) works as long as T has an operator>>, use this fact together

with std: :getline() (https://en.cppreference.com/w/cpp/string/basic_string/getline)
to read entire lines.

Hint: Mathematically, what this assignment requests is for you to calculate LiNLoN...N L,
where L; is the set of all words on line ¢. This operation is similar to a sum, but with set
intersection instead of addition.

Example runs (bold is user input)

Enter your text:
STL algorithms are extremely useful

there are many algorithms in the STL

STL algorithms are time savers
STL algorithms provide useful solutions that are optimized

discover that many STL algorithms are useful for many tasks
<ctrl + D>

The words common with all lines are:

STL

algorithms

are

Enter your text:

STL algorithms offer great efficiency
Optimize tasks with standard functions
Enhance productivity using these utilities
No word appeared on every line.

https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://en.cppreference.com/w/cpp/string/basic_string/getline

TDDD38 Page 7 of 9 2024-05-31

5. Discussion: Why is it important to use the member initialization list in constructors? Give
an example where it is absolutely necessary to initialize data members using the member
initialization list. Give another example where the order of initialization in the member
initialization list matters.

[2p]

TDDD38 Page 8 of 9 2024-05-31

6. Discussion: Explain what overload resolution is. Your explanation must describe how [3p]
overload resolution deals with multiple functions of the same name. In what order does
the compiler prioritize candidate functions? Does the data type of parameters matter?
Does the data type of return types matter? Does templates parameters matter? How does
implicit type conversion plays into it?

TDDD38 Page 9 of 9 2024-05-31

7. JSON is a common dynamic storage format. In this assignment we will work with a reduced
version of JSON (see below). In this assignment you will implement a reduced framework
for storing and printing JSON objects.

A JSON object consist of key-value pairs, where the key is a string and the value, called a
field, can be any of these:

e A double value,

e A std::vector that contains a collection of fields, i.e. it can be an arbitrary collection
of any of the things mentioned in this list (referred to as JSON_List from now on),

e Another JSON object.

Example: Below we have a JSON object:

{
"a" : b,
"p" ¢ [1, [2, 3], 41,
e o
"d" : 0,
e" 6
}
}

It has three fields, "a" "b" and "c". Note that "a" contains a double, while "b" contains
a list of fields, where the first and last elements are double values, and the second element
is another list. "c" contains another JSON object with two double fields, "d" and "e".

In given_files/program?.cc there is a given class representing JSON objects called JSON.
Your job is to implement the class JSON_Field. It needs to fulfill the following requirements:

o At a single point in time it can store one of the following: double, JSON_List (see the
given file), JSON. These members must share the same memory location.

e It must have a default constructor, and a constructor for each type it can store. Note
that it must still be possible to copy and move the JSON_Field object, however the
compiler generated defaults are enough.

e It must have an assignment operator that can take any of the types it can store and
set the stored value to what was assigned.

o A print function that takes a std: :ostream reference, and an indentation (needed by
given JSON: :print () that handles all indentation for you). This function will vary its
behaviour depending on what is currently stored, as such:

— if double: just print the value to the stream.

— If JSON_List: print all the values separated by a comma and surrounded by [and
1. You must pass the indent value to each element’s print () function since it
might be a JSON which is the only case that uses it.

— If JSON: call JSON: :print () on the stored object.

The example in given_files/program?.cc should work without any modification.

Requirement: All the potential values that are stored in JSON_Field must share the same
memory location, if they don’t you will earn zero points for this assignment (i.e. they must
be stored in a union or std::variant (https://en.cppreference.com/w/cpp/utility/
variant)).

https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/variant

