
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2024-03-15

Computer examination in
TDDD38 Advanced Programming in C++

Date 2024-03-15

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT2

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be passed in separately from the code.



TDDD38 Page 2 of 10 2024-03-15

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.



TDDD38 Page 3 of 10 2024-03-15

1. [5p]If you passed the midterm test then skip this assignment (you get full points).
Reflection refers to features that allow programs to examine and modify its own behaviour.
C++ does not have any reflection as a builtin feature (yet!), but it is possible to do some
basic introspection (i.e. examination of the code itself) by using templates in a clever way.
In this assignment you will create a template called callable_info that takes the data
type of a callable object and extracts the return type and the type of the parameters as well
as the number of parameters.
A partial implementation of callable_info is given in given_files/program1.cc, but it
is far from complete. However most of the extraction logic has been implemented. Recall
that callable objects are either functions, function objects or lambdas (which are really just
function objects in disguise).
It is fairly straight forward to extract the parameter- and return types from a function or
function pointer (see specializations #1 and #2 of callable_info_helper.
To extract the parameter- and return type of a function object (and by extension lamb-
das) we must examine the member function operator(). Specializations #3 and #4 of
callable_info_helper handles pointers to member functions.
Note that callable_info is implemented as an alias template to the return type of the
undefined get_callable_info() function.
To finish the implementations, two things need to be implemented:

• The type trait extract_type which takes an std::size_t called N and a variadic type
template pack, and define a type alias called type that is the N:th type in the variadic
pack.
Note: N = 0 should return the first type in the variadic pack.
Note: The given helper struct callable_info_base uses extract_type in its imple-
mentation.
Hint: Use variadic recursion, with N equal to 0 as the base case.

• The function template get_callable_info which takes a template parameter T. This
function should have two overloads:
1. If T has the member function operator() then it should return callable_info_helper

with its template parameter being the declared type of &T::operator() (note that
you can check for existence of a member function by either trying to call it, or by
checking that the expression &T::operator() is valid).

2. Otherwise, return callable_info_helper with its template parameter simply
being T.

Note: All types will match the second case, so you must make sure that it is only
ever picked if the first case is not applicable (i.e. utilize SFINAE and the overload
resolution rules to induce a priority on the cases).

It is probably easier to implement and test extract_type and get_callable_info in
isolation before trying to integrate them with the given code.



TDDD38 Page 4 of 10 2024-03-15

2. [2p]Discussion: What is placement new? How is it different from new? When should it be
used?



TDDD38 Page 5 of 10 2024-03-15

3. [4p]In given_files/program3.cc there is class Sparse_Map given which implements a very
basic associative container called a sparse map. This container is generally optimized for
fast iterations over all key-value pair with the cost being expensive insertion, deletion and
lookup operations. However we can make all operations constant time if we use a lookup
table for the expensive operations (more on this shortly).
In this assignment you have three things you need to do:

• Make the Sparse_Map into a template where Key and Value can be arbitrary types.
You may assume certain properties of Key and Value: write what those assumptions
are in a comment, if you don’t you might get point deductions.

• Make insert(), erase() and at() amortized constant-time with regards to data.size()
by creating an appropriate lookup table that can be used to lookup what index a spe-
cific key is currently stored at in data. Note that this table must be an appropriate
container that have amortized constant-time operations. It is also important to note
that this lookup table should NOT be used during iteration, only during the speci-
fied functions: otherwise we are not utilizing the blinding speed of std::vector for
our iterations. There are a few comments marked TODO in given_files/program3.cc
which might help you realize how this can be achieved.

• Implement an bidirectional iterator for this sparse map implementation. Read more
here: https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator
Besides the normal requirements that a bidirectional iterator has, it must also fulfill
the following requirements:

– operator*() must return a pair containing a const reference to the key of the
current element and a normal reference to corresponding value.

– The iterator type must be public in Sparse_Map, but only Sparse_Map should be
able to create iterators.

– The iterator should have one data member, which is an iterator the data container
in Sparse_Map.

There are testcases given in given_files/program3.cc, you should test the Sparse_Map
for different key and value types.

https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator


TDDD38 Page 6 of 10 2024-03-15

4. [3p]Discussion: Suppose we are iterating a container and whenever we find the value 0 we
insert another 0 at the beginning of the container, and insert 1 at the end. Name two con-
tainers that can be used to do this in-place (i.e. by directly modifying the container rather
than copying to a new one) without moving the previously existing elements in memory.
Explain why your chosen containers work, and explain why std::vector does not work.
It might be useful to look at this page: https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/container


TDDD38 Page 7 of 10 2024-03-15

5. [4p]In given_files/processes.txt there are several processes/programs listed, each with its
own list of hardware resources that they use. At even intervals your operating system must
decide which programs should run, but in order to do so it must take into account that
certain resources might be busy. If a process depends on a resource that is busy, then that
resource is not viable to run at this moment.
In this assignment you will use STL algorithms and containers to determine which pro-
cesses from given_files/processes.txt can run given a list of busy resources. There is
a struct called Process given in given_files/program5.cc, you must use this struct in
your solution. You must implement and use both stream operators for Process. You may
not use any loops, recursion or std::for_each in this assignment.
Your program may assume that a file called processes.txt exists, where each line contains
a unique process on the following format:

<name of process (may contain spaces)>: <list of resources separated by spaces>

The user should then enter a list of busy resources to std::cin (when finnished entering
busy resources the user presses ctrl+D). See examples in given_files/program5.cc.
Note: You may assume that all lines in the file follow the specified format. I.e. no need
for error handling.
Hint: To read a line from a stream, use std::getline(). To process said line, then transfer
it into a stringstream. Stream iterators can be used with any type that has corresponding
stream operator.
Hint: You can use std::getline() to read until a specific character (: in this case) from
a stream.
Hint: To find which processes can run, remove any processes that have any overlap what-
so-ever with the list of busy resources (i.e. where the intersection of the process resource
list and the busy resource list is non-empty).



TDDD38 Page 8 of 10 2024-03-15

6. [5p]The Entity-Component-System (ECS) pattern is a common way to design simulations and
games. In this pattern we have entities that represent objects within the simulation/game,
and each entity has a set of components which represents said entity having specific prop-
erties and/or data. Finally we have systems which processes components. A system only
process those entities that have the specified component(s). There are many ways one can
implement the ECS pattern. In this assignment you will create a very simple implementa-
tion of entities that stores arbitrary components.
In given_files/program6.cc there is a given program that sets up a very simple simulation
with 10 entities. There are three types of components: Name, Health and Damage. Each
entity will be randomly assigned a set of components. Then we have two systems: one that
processes all the Name components, and one system that processes all entities that have
both a Health and a Damage component.
To make this given program work, your job is to implement the Entity class, which must
have the following member function templates (all of which takes a component type T as a
template parameter):

add takes a T object and stores that object in the entity.
has returns true if the entity contains an object of type T and false if it does not.
get gets a reference to the T object that is currently stored in the entity (you can assume

that this function is only called when we know the entity has a component of type T).

We need to keep track of which types are currently being stored in an entity, which can be
done using typeid and std::type_index. See here: https://en.cppreference.com/w/
cpp/types/type_index
There are many ways to implement Entity and you are free to do it however you want as
long as you don’t modify the main program in any way. Below is a suggestion for how to
do it using polymorphism. Create two classes:

ComponentBase which stores a std::type_index data member that represents which
type is currently stored in it. Note: this class must be polymorphic, so make sure
there is at least one virtual function (for example the destructor).

Component is a class template with type parameter T that inherits from ComponentBase.
This class template should store a value of type T, and have a constructor that auto-
matically sets the std::type_index stored in the base class to the typeid of T. It
should also have a member function get() that returns a reference to the stored T
value.

Then entity should store a collection of ComponentBase pointers. When we add a component
to an entity we simply allocate a Component<T> object (where T is the component type).
To check if a component is a specific type, we simply examine the store std::type_index
member.
To actually retrieve a component of a specific type T in an entity, we loop until we find
a ComponentBase pointer which stores that type (check the std::type_index member)
and then cast that pointer to a Component<T> pointer and use the Component<T>::get()
member function.
Requirement: The given main program may not be modified in any way.

https://en.cppreference.com/w/cpp/types/type_index
https://en.cppreference.com/w/cpp/types/type_index


TDDD38 Page 9 of 10 2024-03-15

Requirement: There may not be any memory leaks and all destructors must run properly,
and it should not be possible to copy an Entity object.
Note: There are a lot of aspects left up to you in this assignment, note that you will be
assessed on how well you use the features available to you.



TDDD38 Page 10 of 10 2024-03-15

7. [2p]Discussion: Explain what an xvalue and an lvalue are. How are they different from each
other? When do they appear? Give an example of an lvalue, an xvalue and a prvalue.


