
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2024-01-11

Computer examination in
TDDD38 Advanced Programming in C++

Date 2024-01-11

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT2

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be handed in separately from the code.



TDDD38 Page 2 of 9 2024-01-11

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.



TDDD38 Page 3 of 9 2024-01-11

1. [5p]Iterators and ranges are a very useful construction that generalizes iteration to a broad
degree. However they are all based around iterating ranges in order. In this assignment
you will create a construction that allows us to iterate things out of order, something like
this:

std::vector<int> v { 2, 3, 5, 7 };
for (int n : select_indices(v, { 0, 0, 3, 1, 2 })
std::cout << n << " ";

Where the select_indices() function determines based on indices what order the elements
in v should be accessed in. Here the resulting output should be: 2 2 7 3 5 since the passed
in indices were { 0, 0, 3, 1, 2 }.
To do this you must create two class templates:

Index_Iterator which takes one type template parameter called Value_It. It has two
data members: index which has type std::vector<std::size_t>::const_iterator
and value which has data type Value_It. Note that index is the current index we
want to access in the range starting at the value iterator.
The Index_Iterator class template is a forward iterator, so it must fulfill the following
requirements:
• It must have type aliases value_type, reference, pointer and difference_type.

All of these are set to corresponding aliases from Value_It. Other than these
it must also have the type alias iterator_category which is set to the type
std::forward_iterator_tag.

• It must have an appropriate dereference operator (operator*). This operator
accesses the current index (retrieved by dereferencing index) at the range starting
at value. Note: value should never be updated, it should always refer to the
start of a range. Instead you have to construct a new iterator (by using std::next)
and dereferencing that.

• Both the prefix and postfix increment operator (operator++). These should in-
crement the index iterator but NOT the value iterator.

• Comparison operators (operator== and operator!=) that simply compares all
iterators.

The constructor of Index_Iterator should only be callable by the Index_Range
class template (this is done by making the constructor private and then marking
Index_Range as a friend).

Index_Range which takes one type template parameter called Container. It has two data
members, a reference to a Container object and an std::vector<std::size_t>mem-
ber called indices.
Index_Range contains two member functions: begin() and end() both of which return
corresponding Index_Iterator objects.
The constructor of Index_Range takes a Container reference, which is used to initialize
corresponding data member,and an std::initializer_list<std::size_t> which is
then used to initialize the indices vector.

You must also create an appropriate select_indices() function template that takes an
arbitrary container and an std::initializer_list<std::size_t> and returns an appro-
priate Index_Range object. There are testcases given in given_files/program1.cc.



TDDD38 Page 4 of 9 2024-01-11

2. [5p]If you passed the midterm test then skip this assignment (you get full points).
In template meta programming we usually think of variadic packs as lists of data types.
In this assignment you will implement a few type traits that perform queries on variadics
packs.
In given_files/program2.cc there is a struct template called Pack which is used to rep-
resent a list of data types (note that it is empty since this is just used to bundle variadic
packs together).
You must create three type traits:

Contains which takes two template parameters: an arbitrary type T and a Pack containing
an arbitrary number of types.
This type trait contains an constexpr static bool variable called value. This vari-
able should be true if any of the types in the Pack is the same type as T, and false
otherwise.
This type trait is undefined if the second template parameter is not a Pack.

Is_Subset takes two template parameters: specifically two Pack types.
This type trait contains an constexpr static bool variable called value. This vari-
able should be true if all types in the first Pack are present in the second Pack, false
otherwise.
Note: You can go through each type in the first Pack and use Contains to check
whether each type is contained in the second Pack.

Are_Equal takes two template parameters: specifically two Pack types.
This type trait contains an constexpr static bool variable called value. This vari-
able is true if both Pack types are subsets of each other, otherwise false.
Note: You can use Is_Subset twice to implement this.

In given_files/program2.cc there are a few testcases given.
Hint: To make sure that your parameters are Pack types, and to have direct access to the
variadic packs, you can create empty primary templates and then use template specialization
to specialize for the case when the parameters are Pack types containing a variadic pack.
Hint: You can solve this using either variadic recursion or using fold expressions. It might
be helpful to use the std::is_same_v type trait defined in <type_traits>.



TDDD38 Page 5 of 9 2024-01-11

3. [2p]Discussion: What is an enum? What is the difference between a scoped enum and unscoped
enum? Give an example of when an enum could be appropriate to use.



TDDD38 Page 6 of 9 2024-01-11

4. [4p]std::variant is a very useful and modern way to represent sum types. A common usecase
for it is to have functions that return values of one of two types, which it does well. However
std::variant is built for having many alternatives. In this assignment you will build a
simpler version of std::variant that only has two possible data types.
Create a class template called Either which takes two template parameters T1 and T2. It
contains an anonymous union which has a field of type T1 called first and another field of
type T2 called second. Either also contains a bool called is_first which is used to keep
track of which of the two fields in the anonymous union that is currently active (if true
then first is active, and if false then second is active).
Either has two constructors, one that initializes first and one that initializes second.
Remember to appropriatly set is_first as well.
You must define a destructor which destroys the appropriate field, i.e. if is_first is true
then it calls the destructor of first, otherwise it calls the destructor of second.
There should be two assignment operators, one for when the user assigns a T1 and one for
when the user assigns a T2.
Note: remember that when it is changing ative field you must use placement new to
construct a new object in the inactive field (remember to call the destructor of the previous
field as well).
Either has three other member functions:

• has_first() which returns the value of is_first.
• get_first() which returns the first field as a reference if first is the active field,

otherwise it should throw an Either_Error.
• get_second() which returns the second field as a reference if second is the active

field, otherwise it should throw an Either_Error.

Requirement: there should be no memory leaks, make sure to check with valgrind.
There are given testcases in given_files/program4.cc.



TDDD38 Page 7 of 9 2024-01-11

5. [2p]Discussion: What is the difference between using parentheses when initializing a variable,
and using curly braces? Give a list of what steps each initialization tries. Are there any
other differences that are not covered by the steps?



TDDD38 Page 8 of 9 2024-01-11

6. [3p]Discussion: Which are the special member functions? Explain the purpose of each of
them and include example code where they might be called assuming the compiler performs
no optimization. Your explanation should also include how the special member functions
are declared. When is the auto generated implementations enough and when should you
implement your own versions?



TDDD38 Page 9 of 9 2024-01-11

7. [4p]From mathematics we are familiar with polynomials, i.e. functions that have the form:

p(x) = c0 + c1x+ c2x
2 + ...+ cnx

n

Where c0, c1, c2, ..., cn are the so-called coefficients and x is a variable. When evaluating a
polynomial this means replacing x with a specific value and then calculating the result of
the expression.
In this assignment you will use STL algorithms to create a string representation of a poly-
nomial and to evaluate said polynomial.
The program should read all coefficients from a single line of input from std::cin (the
coefficients are of the type double). The coefficients are separated with a space. The first
coefficient the user enters should be c0, then c1 and so on. Once the user is happy with
their coefficients they press <Enter>. Note that the number of terms in the polynomial is
determined by the number of coefficients the user enters.
Hint: use std::getline() and stringstreams to achieve this. You will do this again later
in the assignment so you should put the reading logic in a separate function.
Once the user has entered the coefficient, you should print the polynomial according to
the execution examples in given_files/program7.cc. How you do this is up to you, but
remember to use STL algorithms and appropriate containers.
Finally the user should be prompted for a list of values on a single line (exactly the same
way we read the coefficients). These values are also double values. Then for each value
you should evaluate the polynomial and print the result according to the format seen in
given_files/program7.cc.
Hint: Evaluating the polynomial can be done by creating a secondary vector called values
which contains x0, x1, x2, ..., xn, where x is the value we want to evaluate and then take the
inner product of this list with the coefficients.
Hint: Use std::pow from <cmath> to calculate powers.
Requirement: You may not use any loops, recursion or std::for_each.


