
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2023-06-01

Computer examination in
TDDD38 Advanced Programming in C++

Date 2023-06-01

Time 14-19

Department IDA

Course code TDDD38

Exam code DAT2

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be handed in separately from the code.



TDDD38 Page 2 of 9 2023-06-01

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.



TDDD38 Page 3 of 9 2023-06-01

1. [4p]The heavy machinery that are operated during large-scale production or processing of prod-
ucts are usually monitored quite closely by various software systems. The purpose of these
systems are to detect faults and problems during production. Generally these systems mon-
itors certain parameters and ensures that most products have values that fall within some
tolerance interval.
In this assignment you must use STL algorithms to implement a program that takes a
sequence of products and reports whether there are any potential problems with the pro-
duction line.
The file factory.txt is the log of a sequence of products processed at a production line.
Each product is represented using the following format:

<name of product> <weight of product> <volume of product>

Where the weight is expressed in kg and volume is expressed in m3. Note that newlines
have no meaning for the format itself, those are just there to make the file easier to read
for humans.
The idea is that a product is potentially faulty if its density falls outside of a specified
tolerance range. For example, if the density tolerance is:[

1000 kg/m3, 1500 kg/m3
]

then any product with a density outside of this interval is potentially a fault.
The production line however has a certain fault threshold n, where we only abort the
production if the system detects n consecutive products that fall outside of the density
tolerance (see output examples in given_files/program1.cc for examples of this).
The user specifies the filename, the lower and upper tolerance as well as the fault threshold
as arguments to the program (i.e. as elements 1 to 4 in argv). Note that the tolerance
bounds are of type double while the threshold n is an integer type.
In given_files/program1.cc there is a struct called Product given which is used to rep-
resent a product in the production line. Product also have a member function density()
which calculates the density of the product. There are also several examples of what the
output of the program should be given different inputs.
Requirement: You are not allowed to write any manual iteration statements, nor are you
allowed to use recursion. Instead you must solve all problems using STL algorithms and
other appropriate components from the standard library.
Hint: To properly read the file using only standard library components, it is a good idea
to define an input stream operator (operator>>) for the given Product struct. It might
also be helpful to define operator<<.
Hint: Either a product falls within the acceptable tolerance or it doesn’t. The idea is that
you must search for n consecutive products that falls outside of the tolerance.



TDDD38 Page 4 of 9 2023-06-01

2. [5p]If you passed the midterm test then skip this assignment (you get full points).
Most of us have had the need to draw various plots at some point. Drawing nice look-
ing diagrams and plots is quite hard to do yourself and involves a lot of graphical pro-
gramming. In this assignment you will use inheritance and dynamic polymorphism to
implement functionality to “draw” plots directly in the terminal (see example output in
given_files/program2.cc). Note that the plots we will draw in this assignment are trans-
posed (meaning the x-axis grows downwards and the y-axis grows to the right) since that
is much easier to print in a terminal. In this assignment we will only plot positive values.
You need to implement the following classes:

Plot is the base class of our hierarchy, all other classes inherits from this one. It represents
an arbitrary plot. It has two pure-virtual functions, print() and get_width(). It has
no data members.
get_width() calculates how many characters in width the printed plot is, i.e. this
function should return the width of the bounding rectangle around the plot.
print() takes an std::ostream and prints the plot to that stream.

Bar_Plot Represents a bar graph/plot. It stores a std::vector containing std::string
and unsigned pairs. These pairs represent each bar, where the string is the label and
the unsigned represents the size.
get_width() should find the size of the longest label, and the size of the largest bar
and then return their sum plus 1.
print() first finds the length of the longest label, and then it prints each bar, one bar
per line. See the example output in given_files/program2.cc for details.

Function_Plot takes a callable object (either as template or using std::function). This
callable object should adhere to the following signature: unsigned(unsigned). The
idea is that this class will draw a function graph by using the callable object. This
class stores the callable object, as well as the lower and upper input values that will
be plotted. If no bounds are given, the default range should be [0, 10].
get_width() calculates the maximum value achieved by the callable object within the
specified bounds.
print() iterates each integer value in the specified range. It prints a number of spaces
equal to the result of the callable object, followed by a single '+' character.

Gallery is a gallery of multiple plots (stored in a std::vector). This class owns multiple
plots and print them side-by-side (see second plot in example output).
A suggested implementation of print() is given in given_files/program2.cc. The
get_width() function should return the sum of the widths of all its stored plots.

Requirement: There may not be any memory leaks in your implementation.
Modify the given main program in given_files/program2.cc so that it works properly
with polymorphism without slicing.
Hint: You can use std::initializer_list to implement the constructors of all the
classes.



TDDD38 Page 5 of 9 2023-06-01

3. [2p]Discussion: Suppose we have a class My_Integer which represents a custom integer type.
Discuss how we can implement implicit type conversions between int and My_Integer.
How is this related to the keyword explicit?



TDDD38 Page 6 of 9 2023-06-01

4. [5p]In this assignment you will implement two classes that will allow a user to split a container
into evenly sized blocks (with the final block being potentially smaller). The idea is that
code like this should work:

std::vector<int> v { ... };
for (auto block : make_blocks <4>(v))
{

// note that 'block' is a vector
for (auto element : block)

std::cout << element << " ";
std::cout << std::endl;

}

Where v is split into blocks of size 4 and then each block is printed on its own line.
The way we achieve this is by implementing two class templates, Block_Container and
Block_Iterator. We also have to define the function template called make_blocks().
All of these templates take two template parameters, Container which represents the type of
the container we are splitting into blocks, and the non-type template parameter block_size
which represents how many elements should be in each block. Note that these template
parameters doesn’t necessarily have the same order in each template.
Below is a description of each template:

make_blocks() is a helper function which allows us to construct a Block_Container in
a nice way. This function takes a container reference as a parameter and constructs a
Block_Container object from that container.

Block_Container stores a reference to a container and has two member functions: begin()
and end(), both of which return appropriate Block_Iterator objects. end() should
return a Block_Iterator where all three of its members are the end iterator of the
underlying container (see below).

Block_Iterator is an iterator which stores three Container::iterator objects, namely:
block_begin, block_end and container_end.
In the operator++() operators, the iterator will move from one block (the current) to
the next block in the container. This is achieved by setting block_begin to block_end
and by incrementing block_end block_size times OR until it reaches container_end.
Once block_end has reached the end of the container, this operator will do absolutely
nothing.
The operator*() will return a std::vector containing copies of the elements in the
current block spanned by block_begin and block_end. Note that this vector should
be constructed each time operator*() is called.
The operator==() and operator!=() should compare the block_begin iterators.
There is no need to compare the other two iterators.

Remember: All three of these templates have the same template parameters.
Requirement: It should only be possible to construct Block_Iterator objects through
the Block_Container class, meaning Block_Iterator should have no public constructors.
There are testcases given in given_files/program4.cc, you are not allowed to modify the
existing testcases. However you are encouraged to add more testcases.



TDDD38 Page 7 of 9 2023-06-01

5. [3p]In this assignment you will create a type trait called largest_type, which takes an arbitrary
number of template parameters. This type trait must have a type alias called type which
will be set to the largest (with respect to the sizeof operator) of all the passed in type
parameters.
You must also create a template alias called largest_type_t which acts as a short-hand
for largest_type<...>::type.
There are a few testcases given in given_files/program5.cc.
Hint: You can use std::conditional from the <type_traits> header and variadic re-
cursion to implement this, but exactly how this is done is up to you.



TDDD38 Page 8 of 9 2023-06-01

6. [3p]Discussion: Explain why the compiler doesn’t implicitly define the default constructor
and the destructor for this struct:

struct My_Struct
{

union
{

std::vector<char> v;
std::string s;
int i;

};
};

How can we ensure that the correct member in the anonymous union gets destroyed when
a My_Struct object falls out of scope? Discuss what we need to consider when assigning
values to v, s or i.



TDDD38 Page 9 of 9 2023-06-01

7. [3p]Discussion: When talking about containers, one of the factors that needs to be considered
is iterator/pointer invalidation.

(a) What does iterator/pointer invalidation mean?
(b) Choose three different containers and compare them with regards to iterator/pointer

invalidation. What guarantees does your chosen containers have?
(c) Give an example (either in code or textually) where iterator invalidation matters. You

can speak in general terms, or you can give a specific example. Briefly explain why it
matters in your chosen example.


