
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2022-08-17

Computer examination in
TDDD38 Advanced Programming in C++

Date 2022-08-17

Time 8-13

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be passed in separately from the code.

TDDD38 Page 2 of 9 2022-08-17

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.

TDDD38 Page 3 of 9 2022-08-17

1. [6p]std::shared_ptr is one of the two smart pointers that are defined in the STL. In this assign-
ment we will explore how this smart pointer is implemented by creating our own (simplified)
version called Counted_Pointer. Note: You are not allowed to use std::shared_ptr in
this assignment.
Whenever a Counted_Pointer is created a so called Counted_Block is allocated. This
contains the actual object we wish to point to as well as a counter that keeps track of how
many Counted_Pointers currently are refering to this object. Whenever a pointer is copied
this counter will increase and whenever one of these pointers are destroyed the counter will
decrease. If the counter reaches zero then the Counted_Block is deallocated.
Counted_Pointer is a class template that takes one template parameter T which represents
the type our smart pointer points to. It contains an inner struct called Counted_Block
that has two data members: data which is of type T and count which is an integer.
Counted_Block should not be accessible from outside Counted_Pointer.
Counted_Pointer stores a pointer to a Counted_Block called block and has the following
member functions:

• operator* which is an operator that takes no parameters and returns a reference to
the block->data. There should be a const and non-const version of this operator.

• operator-> takes no parameters and returns the address (a pointer) of block->data
which can be retrieved with either the & operator or the std::addressof function.
There should be a const and non-const version of this operator.

• count() is our way to retrieve the number of pointers currently pointing to the object.
If block is not null this function returns block->count, otherwise it returns 0.

There must be a default constructor that sets block to nullptr. There is also a variadic
constructor that takes an arbitrary number of parameters of arbitrary type. This con-
structor allocates a new Counted_Block and initializes data with the help of the passed in
parameters, and sets count to 1.
You must also implement all the special member functions correctly. However beware that
due to the variadic constructor there must be two overloads for the copy constructor:

• Counted_Pointer(Counted_Pointer const&)
• Counted_Pointer(Counted_Pointer&)

Hint: Implement the non-const copy constructor by calling the const copy constructor
directly. This way you don’t get any code repetition.
The copy constructor and assignment operator should increase block->count (as long as
block is not null). The destructor should decrease block->count, and if it reaches 0 then
delete block. The move constructor and assignment operator have no special behaviour: it
should just swap the data members.
A free (i.e. not a member) function template called make_counted must also be imple-
mented. This function template takes a template paramter T and an arbitrary number of
function parameters and returns a Counted_Pointer<T> object which is initialized with the
passed in parameters.
There are testcases given in given_files/program1.cc.
Requirement: You must correctly use forwarding references for the variadic constructor
and make_counted. This is not tested in the testcases so make your own tests.

TDDD38 Page 4 of 9 2022-08-17

2. [3p]Discussion: What is overload resolution? Your answer must include the following:

• What a candidate function is.
• What parts of a function call is considered when finding candidate functions.
• A full description of the process that disambiguates between multiple candidates.

TDDD38 Page 5 of 9 2022-08-17

3. [5p]In this assignment you will implement a syntax tree for simple boolean expressions. This
syntax tree will have support for three operations: Negation, And and Or. Each tree will
represent a boolean expression and supports evaluating and printing these expressions.
To do this we will use dynamic polymorphism to represent each node in the syntax tree.
Implement the following six classes:

Expression Is the top-most base class for the other classes. It contains two pure-virtual
member functions: bool evaluate() and void print(std::ostream& os).

Literal Represents a boolean value (either true or false). It has a bool data member
called value. The evaluate() member function returns value while print() either
prints the value of value as either true or false (Note: printing 1 or 0 is not OK).

Negation Represents the negation of some expression. Contains a Expression pointer
called expression. print() will print a ! to the passed in stream, and after that
will call pretty_print() on expression (see further down for details). evaluate()
evaluates expression and negates the result (use operator!).

Compound Is the direct base class of And and Or. This class represents an operator that
can have multiple operands (arguments). It has a std::vector called expressions
which contains expressions. Compound also introduces a pure-virtual member function
std::string glyph() which returns the string representation of the operator (for
example "&&" for And). This class then overrides print() as follows:
Call pretty_print() (see further down) on each expression in expressions and print
the result of glyph() between each expression.

And Inherits from Compound and overrides glyph() so that it returns the string "&&".
Then override evaluate() such that it returns true if all expressions in expressions
evaluates to true. Otherwise it returns false.

Or Inherits from Compound and overrides glyph() so that it returns the string "||". Then
override evaluate() such that it returns true if any expression in expressions eval-
uates to true. Otherwise it returns false.

Besides these classes a function called pretty_print() must be implemented. This func-
tions takes two parameters: a std::ostream& and an expression. It will then pretty print
the expression to the stream.
Pretty print in this assignment simply means that you print the expression using their
member function print(). However, if the expression has Compound as a base class, then
it must add parenthesis around the expression.
Requirement: You are not allowed to introduce any extra member functions in the classes
to achieve this. Instead use the builtin runtime type information (RTTI) of the polymorphic
classes.
There is a partial test program given in given_files/program3.cc.
Note: Issues with memory management will lead to point deductions.

TDDD38 Page 6 of 9 2022-08-17

4. [2p]Discussion: Describe both the initialization and the destruction order of data members in
a class hierarchy. In what order are the constructors/destructors called? In what order are
the data members initialized/destroyed?

TDDD38 Page 7 of 9 2022-08-17

5. [4p]It is quite common to associate things with a collection of tags. But just associating data
with tags is usually not that beneficial: we want to be able to search through the data based
on the tags.
In this assignment you will write a program that takes a file and a set of tags and finds all
entries in the file which contains the specified set of tags (see given_files/program5.cc).
The file has the following format: each line represents an entry and its tags. The first word
of a line is the entry and all other words are tags. The order of the tags have no significance.
Example: Given the following file:

entry1 a c b
entry2 b c d
entry3 d c a

Now, if we search for all entries with the tag b we will get entry1 and entry2 since those
are the entries that have the tag b. If we search for all entries that have a and c we will get
entry1 and entry3 since those both have the specified tags. Notice how the order of the
tags doesn’t matter, the important part is which tags are associated with which entry.
To implement this program you have to use STL Algorithms (or C++20 Ranges/Views).
In this assignment it is also important to pick appropriate STL containers since the right
choice will simplify the solution by quite a bit. You are not allowed to introduce any loops
besides the ones in the given file. Nor are you allowed to use recursion or std::for_each.
Note: there is no need to rewrite the given read_table function. In this function you
should just fill in all the comments based on your choices. So it is OK (and even encouraged)
that you leave the while-loops in read_table as they are. Your main focus should be on
implementing the rest of the main function.
In the main function you must implement the following steps:

1. Remove all elements from table that does not have the specified tags. The recom-
mended way to do is to check whether the element’s tags includes all of tags. You can
also check the intersection between tags and the element’s tags.

2. Extract the entry from each element.
3. Print each entry to std::cout in sorted order.

Think carefully about which containers to use in this assignment. Pay close attention to
the requirements that your choosen algorithms have. Can you fulfill these requirements by
choosing good STL containers?
There is a beginning of the program given in given_files/program5.cc. The file names.txt
contains 50 names tagged with Male or Female (or both). You can test your program by
passing in this file and comparing with the examples in given_files/program5.cc. Note
that the handling of command-line arguments and parsing of the file is given.
Hint: Using std::vector will potentially make this assignment significantly harder.

TDDD38 Page 8 of 9 2022-08-17

6. [2p]Discussion: What are the performance benefits with using STL Ranges/Views rather than
STL algorithms? Are there other benefits besides performance? Explain.

TDDD38 Page 9 of 9 2022-08-17

7. [3p]In this assignment we will write a function template called count_bytes() that takes an
object and return how many usable bytes are stored in that object. What we mean with
usable is simply that these are the bytes that we have direct access to. We do not count
internal overhead for containers.
count_bytes should work recursively for containers and arrays, meaning it will take the
sum of count_bytes() called on each element. For the base case (i.e. when it is neither a
container nor an array) it should instead just calculate the number of bytes in the object
with sizeof.
There are testcases in given_files/program7.cc. Note that it is not necessarily enough
to fulfill all of these. The important part of this assignment is that the function works in
the general case.
Hint: Make two overloads, one for the base case and one for the recursive case. You might
have to add additional parameters to make this work properly. Make sure that the base
case is only selected if the object is not a container or array.
Note: Containers and arrays can be written as one case, but it is OK to write it as separate
cases if you find that easier.

